• Title/Summary/Keyword: Ground heat

Search Result 898, Processing Time 0.023 seconds

Numerical Study of Heat Transfer Efficiency, Performace and Mechanical Behavior induced by Thermal Stress of Energy Pile (에너지 파일의 열교환 효율 및 성능, 열응력에 의한 역학적 거동 평가)

  • Min, Sun-Hong;Lee, Chul-Ho;Park, Moon-Seo;Koh, Hyung-Seon;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2010
  • The ground source heat pump system is increasingly being considered as an alternative to traditional heating and cooling systems to reduce the emission of ground house gases. In this paper, A series of numerical analysis for energy piles has been performed focusing on heat transfer efficiency, performance and thermal stress. Results of numerical analyses for the W-shape type shows more efficient heat exchange transfer than the coil type. From results of the thermo-mechanical analysis, it is shown that the concentration of thermal stress occurs around the circulating pipe and the interfaces between different materials. The largest deformation caused by thermal stress is observed in the energy pile.

Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea (지열히트펌프 시스템의 국내 적용현황 조사 및 분석)

  • Choi, Mi-Young;Ko, Myeong-Jin;Kim, Yong-Shik;Park, Jin-Chul;Rhee, Eon-Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

A Study on Design for Energy-saving Based on Analysis of Current Situation in School Facilities (학교시설 현황분석을 통한 에너지절약설계 개선방향 연구)

  • Meang, Joon-Ho;Kim, Sung-Joong;Lee, Seung-Min;Ko, Hyun-Su
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • We suggest improvement direction of energy-saving design based on analysis of current situation in school facilities. School facilities have large area among public buildings. While the number of students is decreasing, the number of school and energy consumption is increasing year after year. School facilities have excellent heat insulation property, but it requires further examination about excessive heat insulation plan. School facilities are using gas heat pump actively for cooling and heating, but has difference in use ratio of ground source heat pump by region. Thus School facilities requires active using of ground source heat pump and BIPV(Building Integrated Photovoltaic System).

Optimum Pumping Rates of Ground-Water Heat Pump System Using Groundwater or Bank Infilterated Water (강변여과수와 천부 지하수를 이용하는 지하수 열펌프시스템의 적정유량)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Jeon, Jae-Soo;Kim, Hyong-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.833-841
    • /
    • 2007
  • The groundwater heat pump system(GWHP) is one of the most efficient ground source heat pump system(GSHP) which uses low grade and shallow geothermal energy for cooling and heating purpose. The GWHP system shall be designed properly based on peak block load performance and optimum pumping rate of groundwater comparable to ground coupled heat pump system(GCHP). The optimum pumping rate depends on groundwater temperature at a specific site, size of plate heat exchanger, and total head loss occurred by whole system comprising pumps and pipings. The required optimum flow rates of the system per RT are ranged from 3.8 to 9.8lpm being less than the typical building loop flow of 9.5 to 11.4lpm.

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations (이중관형 지중열교환기 구성에 따른 현장 열성능 평가)

  • Lee, Seokjae;Jung, Hyun-seok;Oh, Kwanggeun;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.

Heat Transfer Equation and Finite Element Analysis Considering Frozen Ground Condition the Cyclic Loading (지반의 동결조건을 고려한 열전도 구성방정식과 유한요소해석)

  • Kim, Young-Seok;Kang, Jae-Mo;Hong, Seung-Seo;Kim, Kwang-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • When the ground temperature drops below $0^{\circ}C$, wet soils expand due to the ice formation in their porous space. This results in frost heave which causes structural stability problems. Frost heave is attributed by several factors such as physical soil properties and heat transfer including pore water phase change. Due to the complex physical phenomena, reliable and verified multi-dimensional numerical models for frost heave problems are still in a research stage. This study presents an efficient and simple method of overcoming numerical problems associated with sudden jump of heat capacity due to the phase change from water to ice in the pore space. This paper proposes heat transfer equation and finite element method when the saturated soils or porous rocks are subjected to freezing. Numerical analyses using the proposed method agree well with the known closed form solution and the laboratory test results.

  • PDF

Verification Experiment of a Water-to-air Ground Source Multi-heat Pump System (물-공기 지열 멀티형 열펌프 시스템 실증연구)

  • Kim, Cheol-Woo;Kim, Byoung-Kook;Lee, Pyeong-Gang;Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jong-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • The aim of this study is to verify the performance of water-to-air multi-heat pump system with a vertical U-tube GLHX(U-tube system) and a double tube GLHX(double tube system), which were installed in a school building located in Asan. For analyzing the performance of the GSHP system, we monitored various operating da~ including the water temperature of inlet and outlet of the ground heat exchanger, mass flow rate, and power consumption. Daily average COP of the single U-tube system and the double tube system were 4.5 and 4.2 at cooling mode and were 3.5 and 3.8 at heating mode. As a result, We know that performance of water-to-air multi-heat pump unit is reliable at actual condition operated in a part load conditions for all day.

Re-hydration of Heat-treated $CaO-SiO_2-H_2O$ System and Their Application under Hydrothermal Condition (열처리한 $CaO-SiO_2-H_2O$계의 수열반응과 이의 응용에 관한 연구)

  • 윤철현;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1387-1395
    • /
    • 1994
  • Re-hydration properties of heated and ground CaO-SiO2-H2O system were studied under hydrothermal condition in order to examine the possibility of recycling ALC waste as raw materials of ALC. Powder of calcium silicate hydrates and ALC waste without heat treatment did not show further hydration while those of heat-treated at proper temperature showed re-hydration properties under hydrothermal condition. The lath-like shape of initially synthesized tobermorite was gradually turned into small debris during heating and plate-like tobermorite was crystallized during re-hydration of the heated powders. Heated and ground ALC waste could be added to natural raw mix for ALC at the ammount up to 20% with increased compressive strength and up to 30% with slightly decreased compressive strength. The optimum heating temperature of ALC for recycling was about 50$0^{\circ}C$.

  • PDF