• Title/Summary/Keyword: Ground Reflection

Search Result 195, Processing Time 0.03 seconds

A 42-GHz Wideband Cavity-Backed Slot Antenna with Thick Ground Plane

  • Lee, Jong-Moon;Cho, Young-Heui;Pyo, Cheol-Sig;Choi, Ik-Guen
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.262-264
    • /
    • 2004
  • We investigate the characteristics of a wideband and high-gain cavity-backed slot antenna in terms of the reflection coefficients, radiation patterns, and gain. A cavity-backed slot antenna structure includes baffles, reflectors, and thick ground planes. The measured gain and bandwidth of a 10-dB return loss in a cavity-backed $2{\times}2$ array slot antenna with $h_1=2 $mm, d=2 mm are 15.5 dBi and nearly 27%, respectively, at 42 GHz. Baffles and reflectors are used to increase antenna gain, thus reducing the coupling among the slots on the thick ground plane.

  • PDF

Design of Dumbbell-type CPW Transmission Lines in Optoelectric Circuit PCBs for Improving Return Loss (광전회로 PCB에서 반사특성 개선을 위한 덤벨 형태의 CPW 전송선 설계)

  • Lee, Jong-Hyuk;Kim, Hwe-Kyung;Im, Young-Min;Jang, Seung-Ho;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.408-416
    • /
    • 2010
  • A dumbbell-type CPW transmission-line structure has been proposed to improve the return loss of the transmission line between a driver IC and flip-chip-bonding VCSEL(Vertical Cavity Surface Emitting Laser) in a hybrid opto-electric circuit board(OECB). The proposed structure used a pair of dummy ground solder balls on the ground lines for flip-chip bonding of the VCSEL and designed the dumbbell-type CPW transmission line to improve reflection characteristics. The simulated results revealed that the return loss of the dumbbell-type CPW transmission line was 13-dB lower than the conventional CPW transmission line. A 4-dB improvement in the return loss was obtained using the dummy ground solder balls on the ground lines. The variation rate of the reflection characteristic with the variation of terminal impedances of the transmission line (at the output terminal of the driver IC and the input terminal of the VCSEL) is about ${\pm}2.5\;dB$.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

Interference Analysis for Synthetic Aperture Radar Calibration Sites with Triangular Trihedral Corner Reflectors

  • Shin, Jae-Min;Ra, Sung-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.

Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide (Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석)

  • Choi, Jee-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Ground wave is an acoustic wave propagating at a sediment sound speed in the case that sediment sound speed is constant with depth, which is explained by modal dispersion effects. In this paper, the ground wave in time domain is simulated using the ray-based approach, which is possible because the modal dispersion can be explained by the guiding of energy caused by reflection and refraction in the waveguide geometry. For a Pekeris waveguide, the ground wave can be interpreted as a sequence of head waves, called a head wave sequence [Choi and Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)]. The ground wave is simulated by convolution of the source signal with a channel impulse response of the head wave sequence, which is compared with simulated signals obtained via a Fourier synthesis of a complex parabolic equation (PE) field.

Site Investigation of Abandoned Coal Mine and Stability of Road Tunnel (도로터널공사구간의 폐갱도 정밀조사 및 터널의 안정성 평가)

  • Shin, Hee-Soon;Kim, Jung-Yul;Lee, Byung-Joo;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyung;Synn, Joong-Ho;Kim, Yoo-Sung;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.17-24
    • /
    • 2001
  • Several underground cavities were found during construction of a road tunnel in 600m length . The area belong to Whasoon coalfield where extensive ground subsidences have occurred. It is necessary to find other underground cavities which might be located just near the road tunnel for safety, The field surveys and laboratory tests were conducted such as surface geological survey(672m), surface reflection seismic exploration(399m), drilling test(3 NX holes), 9 laboratory tests for rocks, 3 boreholes televiewer tests, reflection seismic exploration in tunnel(2, 342m). To estimate the effects of underground cavities on the road tunnel, 3 geological section were analysed with FLAC-2D modeling. The effects of the ground reinforcement were also analysed.

  • PDF

A Low-Profile Broadband Array Antenna for Home Repeater Applications

  • Yoon, Sung Joon;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This paper reports on the proposed design of a low profile broadband array antenna for home repeater applications. The proposed antenna consists of $1{\times}4$ patch elements and two ground planes, one of which is slitted. By using the gap feeding method, the impedance matching of the antenna is improved by a multi-resonance phenomenon. The proposed antenna provides a wide -10 dB reflection coefficient bandwidth simultaneously covering the Global System for Mobile communications (GSM-1800), Personal Communications Service (PCS), and the Universal Mobile Telecommunication System (UMTS) bands (1.67-2.32 GHz). In order to reduce the mutual coupling between adjacent patch elements, slits are embedded in the ground plane. An isolation level of -20 dB is realized over the entire operating frequency band.

Characteristics of a dipole on AMC consisting of a normal material and a ground plane (일반 물질과 접지면으로 구성된 AMC 위의 다이폴 안테나 특성 분석)

  • Lee, Dong-Hyun;Woo, Dea-Woong;Kim, Gi-Ho;Ji, Jeong-Keun;Seong, Won-Mo;Park, Wee-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.347-348
    • /
    • 2008
  • We investigate the characteristics of a dipole antenna on an artificial magnetic conductor (AMC) constructed of a normal material and a ground plane. We studied how the antenna performance is affected by changes in the dipole length and the distance between the dipole and the ground plane. The relation between the reflection phase of the AMC and the input resistance of the dipole for input impedance matching is also verified.

  • PDF

An Analysis of Multi-path Propagation Characteristics Using DTM : Considering Slope of the Ground Surface (DTM을 이용한 다중경로 전파특성 분석 : 지면의 경사를 고려한 해석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Min-Nyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.71-78
    • /
    • 2007
  • We suggest a multi-path propagation analysis method using DTM(Digital Terrain Map). Generally, the total signal strength at a target is calculated by adding the field propagated in free space and the field reflected from the ground surface. In this paper, we also consider the vertical reflections associated with the vertical surfaces such as precipitous cliffs and electricity pylons in the mountain area. In addition, we primarily take account the main slope of the ground surface to improve the accuracy of the total field density at the target.

Examination on the influence of Depth, Size and Interval of Rebar on the Signal of Ground Penetrating Radar (철근의 깊이, 굵기 및 간격이 GPR 신호에 미치는 영향 조사)

  • Kim, Young-Joo;Lee, Seung-Seok;Ahn, Bong-Young;Kim, Young-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 2000
  • Ground penetrating radar(GPR) was applied for measuring depths, sizes and intervals of rebars embedded in concrete. A concrete wall was constructed for this study and a sand pool and a concrete block were used for simulation. Result of this study shows that GPR can be used for measuring rebar depths and intervals, even though it is limitary, but that measuring sizes is almost impossible. Simulation with the sand pool was helpful for research on the versatile rebar arrays though signal was not clear as real concrete wall. A concrete block with many cylindrical holes for inserting different sized rebars could not be used for simulator due to many unknown reflective waves. Antenna orientation must be perpendicular to rebars for large reflection signal.

  • PDF