Browse > Article
http://dx.doi.org/10.7474/TUS.2018.28.6.596

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment  

Ryu, Dong-Woo (KIGAM (Korea Institute of Geoscience and Mineral Resources))
Lee, Ki-Song (Chungbuk National University)
Kim, Eun-Hee (ETRI (Electronics and Telecommunications Research Institute))
Yum, Byung-Woo (KIGAM (Korea Institute of Geoscience and Mineral Resources))
Publication Information
Tunnel and Underground Space / v.28, no.6, 2018 , pp. 596-608 More about this Journal
Abstract
As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).
Keywords
Magnetic resonance; Urban ground sink; Real-time-areal monitoring; Path loss; Reflection coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tan, X., Z. Sun, and I. F. Akyildiz, A testbed of magnetic induction-based communication system for underground applications, IEEE Antennas Propag. Mag., [Online]. Available: http://arxiv.org/abs/1503.02519
2 Askari, A. R. Stark, J. Curran, D. Rule, K. Lin, Underwater wireless power transfer, Wireless Power Transfer Conference (WPTC), 2015 IEEE, pp. 1-4.
3 Brown, W., 1984, The history of power transmission by radio waves, IEEE Trans. Microw. Theory Tech., vol. MTT-32, no. 9, pp. 1230-1242.
4 Hirai, J., T. W. Kim, and A. Kawamura, 2000, Study on intelligent battery charging using inductive transmission of power and information, IEEE Trans. Power Electron., vol. 15, no. 2, pp. 335-345.   DOI
5 Jang, Y. T. and M. M. Jovanovic, 2003, A contactless electrical energy transmission system for portable-telephone battery chargers, IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527.   DOI
6 Karalis, A., J. Joannopoulos, and M. Soljacic, 2008, Efficient wireless nonradiative mid-range energy transfer, Ann. Phys., vol. 323, no. 1, pp. 34-48.   DOI
7 Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, 2007, Wireless power transfer via strongly coupled magnetic resonances, Sci. Express, vol. 317, no. 5834, pp. 83-86.
8 Lee, K. and D.-H. Cho, 2013, Maximizing the capacity of magnetic induction communication for embedded sensor networks in strongly and loosely coupled regions, IEEE Trans. Magn., vol. 49, no. 6, pp. 2946-2952.   DOI
9 McSpadden, J. and J. Mankins, 2002, Space solar power programs and microwave wireless power transmission technology, IEEE Microw. Mag., vol. 3, no. 4, pp. 46-57.   DOI
10 Sun, Z. and I. F. Akyildiz, 2010, Magnetic induction communications for wireless underground sensor networks, IEEE Trans. Antenna Propag., vol. 58, no. 7, pp. 2426-2435.   DOI