• 제목/요약/키워드: Grinding characteristics

검색결과 445건 처리시간 0.027초

쾌적조형 부품의 후처리 방안에 관한 연구 (A research on Postprocess Finishing Method of The Rapid Prototyping Parts)

  • 양화준;김성준;장태식;이일엽;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 1997
  • Even as many methods and technologies have been introduced on data generation, parts orientation and layer slicing to acquire the rapid prototyping(RP) parts that have useful surface to satisfy customers' needs such as stylingldesign verification directionlindirect tooling directly from the RP machine, these trials continue to suffer from the surface roughness due to the build characteristics of RP technology. A new postprocess finishing method is suggested in this paper to overcome the surface roughness problem on the surface of the RP parts. To prevent deterioration of dimensional accuracy from the conventional grinding-only, and coating-grinding methods, 4-step surface finishing process is applied. To satisfy the various requirements from the RP oriented industrial f elds, effective procedure, coating material, grmd~ng tools and methods are employed.

  • PDF

최적 연속전해드레싱 시스템의 개발과 제어특성 (The Trial Construction of Optimum In-Process Electrolytic Dressing System and the Control Characteristics)

  • 김정두;이은상
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.680-687
    • /
    • 1995
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. But the present dressing system cannot have control of optimum dressing of the superabrasive wheel. This study has proposed a new optimum in-process electrolytic dressing system. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to gap increase.

연삭기용 직각 전자척의 자력특성에 관한 연구 (Magnetic Characteristic of Square Electro-Magnetic Chuck using for Grinding Machine)

  • 맹희영;이용구
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.215-222
    • /
    • 2003
  • The new square electro-magnetic chuck, which is using for the clamping devices on a grinding machine, is developed in this study to improve the convenience of grinding works. The various kinds of structures are recommended to find the most adequate magnetic characteristics through the analytical approach using finite element methods. The analyzed results are retrofitted to solve the drawbacks of previous models step by step by considering the magnetic fields, strength and distribution of drag force, and thermal deformations of chuck. such as high parallelism and flatness. Finally the best recommended models is designed to satisfy the KS specifications required for the commercial magnetic chuck. The prototype chuck with this dimensions and structures is manufactured. For this final model, the experimental verifications are investigated whether the KS specifications are satisfied.

  • PDF

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Fault Detection of the Cylindrical Plunge Grinding Process by Using the Parameters of AE Signals

  • Kwak, Jae-Seob;Song, Ji-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.773-781
    • /
    • 2000
  • The focus of this study is the development of a credible fault detection system of the cylindrical plunge grinding process. The acoustic emission (AE) signals generated during machining were analyzed to determine the relationship between grinding-related faults and characteristics of changes in signals. Furthermore, a neural network, which has excellent ability in pattern classification, was applied to the diagnosis system. The neural network was optimized with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative learning process. The success rates of fault detection were verified.

  • PDF

난삭재의 초정밀.고능률 연삭가공을 위한 다이아몬드숫돌의 개발 (Development of diamond wheel for ultra precision and high performance grinding of difficult-to-materials)

  • 허성중
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2172-2178
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted. Wheels, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond grains were bonded firmly by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work surfaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are suggested, and the grinding characteristics of wheels are also illustrated.

원통연삭 가공물의 3차원 형상특성에 관한 연구 (A Study on the 3-D Form Characteristics of Center Ground Parts)

  • 조재일;김강
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.95-99
    • /
    • 1996
  • The form accuracy of parts has become an important parameter. Therefore dimensional tolerance and geometric tolerance are used in design to satisfy required quility and functions of parts. But the informations for machining conditions, which can satisfy the assigned geometric tolerance in design, are insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among these parameters. Finally, a methodology is proposed for getting the optimal grinding condition for precision workpiece The results are as follows; The effects of work speed and depth of cut on workpiece shape are ignorable compared to the effect of traverse speed. These is the optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing when the traverse speed is increased.

  • PDF

연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구 (A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process)

  • 황준;황덕철;우창기;정의식
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-6
    • /
    • 2005
  • Machining is a one of the broadly used manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Experimental results show that the generated fine aerosol which particle size less than 10micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This quantitative analysis can be provided the basic knowledge f3r further research for environmentally conscious machining technology developments.

성형연삭기의 주축부 구조해석과 최적설계에 관한 연구 (A Study on the Structure Analysis and Optimum Design of Surface Grinding Machine Spindle System)

  • 한정빈;황규원;정명진;박동삼
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.83-94
    • /
    • 1986
  • Grinding machine, one of the precision machine tool, requires high accuracy in spindle system. But, recent Inspection and Test reports by KIMM shows high inferio¬rity ratio in home-made grinding machines and points out that this is mainly due to the lack of design ability and assembling technique of spindle system. In this paper, therefore, static stiffness, dynamic characteristics, thermal defor¬mation and error motion of spindle system were studied. With these results, we presented the general data to design and assemble the spindle system. Test of spindle system modified by this study showed that several factors affecting machining accuracy were improved largely.

  • PDF

연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구 (A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process)

  • 황준;황덕철;우창기;정의식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.282-287
    • /
    • 2005
  • This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Machining is a one of the broad manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This qualitative analysis can be provided the basic knowledge for further research for environmentally conscious machining technology developments.

  • PDF