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Fault Detection of the Cylindrical Plunge Grinding Process by
Using the Parameters of AE Signals

Jae-Seob Kwak*, Ji-Bok Song
School of Mechanical Engineering, Pusan National University

The focus of this study is the development of a credible fault detection system of the

cylindrical plunge grinding process. The acoustic emission (AE) signals generated during
machining were analyzed to determine the relationship between grinding-related faults and
characteristics of changes in signals. Furthermore, a neural network, which has excellent ability
in pattern classification, was applied to the diagnosis system. The neural network was optimized
with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative

learning process. The success rates of fault detection were verified.
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1. Introduction

In recent years, the grinding operation has been
used in precision machining when surface rough-
ness and/or geometric tolerances cannot be met
by traditional cutting operations. With the neces-
sity of near net-shape technology for precision
components, the demand for the improvement of
grinding performance will increase. However,
there are unique characteristics in the grinding
process. For example, as opposed to a turning
tool, grinding wheels contain many grains that
are randomly spaced and occupied within the
periphery of the wheel. For this reason, a mathe-
matical approach to studying the grinding process
includes many functional parameters that cannot
certify to their quantitative relations (Lindsay
and Hahn, 1971; Kim et al., 1994).

A grinding burn, which is one of the faults
occur to a ground surface, is related to the thick-
ness of the oxide layer, which in turn is affected
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by the maximum temperature at the cutting zone
(Kawamura and Mitsuhasi, 1981). The generated
burn deteriorates the surface performance of a
product. Another fault is chatter vibration, which
is a relative motion between the grinding wheel
and the workpiece. As the result of this motion,
the ground surface includes undesired integrity
and, in some cases, damage. In addition, the
increased grinding force associated with chatter
vibration leads to accelerated wheel wear (Liao
and Shiang, 1991). Workpiece burn during the
grinding process is essentially a kind of an ir-
reversible change in the microstructure of a sur-
face layer. The burn occurs when workpiece is
exposed to continuous high temperature at the
grinding zone. A visual observation of a grinding
burn is due to temper colors from very thin oxide
layers on the workpiece surface. This layer of
ferrous material is composed of Fe,0;, Fe;O,, and
FeO membranes from the free surface. At the
onset of a grinding burn, the grinding force and
the rate of wheel wear increase sharply, and the
surface roughness deteriorates. S. Malkin (1989)
proposed a critical limit for grinding burn with
respect to various items in surface grinding.
According to his research, grinding burn appears
easily on the surface of a workpiece when smaller
abrasives, higher grades of grinding wheels and
more hardened materials are used.
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Chatter vibration is a dynamic instability that
occurs in most machining processes, including
grinding, and is considered to be the most serious
cause of deterioration of surface quality. In gen-
eral, such vibration limits the productivity of
machining operations and causes the deteriora-
tion of the integrity of workpiece surfaces. More-
over, during the grinding process, the growth of a
wavy surface on the grinding wheel, a growth
induced by chatter vibration, results in the need
for the interruption of the grinding process to
dress the wheel.

In this study, the neural network has been
applied to grinding diagnosis system. The param-
eters of acoustic emission (AE) signals have been
used as the inputs of the neural network.

2. AE Signal and Neural Network

2.1 Fault Phenomena and AE Signal

Grinding is often done in the final finishing of
a component because of its ability to satisfy strict
requirements of surface roughness. However,
when a grinding fault generates, the allowable
range of surface roughness cannot be maintained.
Grinding burns often occur in workpieces, espe-
cially with adhesive materials. Metals adhering
between voids within the grinding wheel constrict
the action of machining. Therefore, the grinding
operation becomes an abnormal state and the
grinding temperature rapidly rises to about 1,
000°C . Due to the effects of the increased tempera-
ture, the surface of the workpiece is burnt. Chatter
marks, which are normal to grinding direction,
can appear on the ground surface. As the grinding
burn or the chatter vibration occurs, the deteriora-
tion of the surface becomes evident.

In order to produce a product that solves
grinding faults such as burn and chatter vibration,
they must be monitored by credible methods.

The AE generated during a grinding process
has been proven to contain information strongly
related to the condition changes in the grinding
zone (Konig et al., 1995; Wakuda et al,, 1993;
Dornfeld and Cai, 1984; Emel and Asibu, 1998).
The investigation described in this paper uses AE
signals to detect chatter vibration and grinding

burn. The parameters for monitoring potential
problems are the peak of RMS (Root Mean
Square), the peak of FFT (Fast Fourier Trans-
form), the count out of the threshold, and the
standard deviation of acquired AE signals.

2.2 Back-propagation Algorithm

In the hope of achieving human-like perfor-
mance, artificial neural networks have been stud-
ied for many years in the field of speech, image
recognition and pattern classification (Bruck and
Goodman, 1988; Widrow et al., 1975; White,
1989). Such neural networks are composed of
many non-linear computational elements operat-
ing in parallel fashion. Neural networks, because
of their massive nature, can perform computations
at a higher rate. Because of their adaptive nature
in using the learning process, neural networks can
adapt to changes in the data and learn the charac-
teristics of input signals. Learning in a neural
network means finding an appropriate set of
weights that are connection strengths from the
elements of one layer to the elements of the next
layer. In this study, the back propagation algor-
ithm of neural networks, which is one of the
learning modes, is used. The squared error (E))
for the output layer and the weight-change equa-
tion are given by the following equations (Free-
man and Skapura, 1991).
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where W, is the weight on the connection from
the ;th input element to jth element of another
layer, ¢ 1is called the learning-rate parameter,

and j,; and §,, are presented as follows:

L
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m is the momentum coefficient, which increases
in the speed of convergence for learning the
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neural networks. X}, is an input pattern, and f’
() indicates a derivative of sigmoid transfer
function for each layer. 7y, is the teaching data,
and (O, is the output data of the neural networks.

3. Experiment and Results

3.1 Experimental Methods

Figure 1 shows a scheme of the experimental
setup. A series of grinding tests were conducted
on a cylindrical grinder with a 228 mm diameter,
WAG60LmV wheel, which is commonly used in
workshops. An AE sensor with a frequency
response of wide bands (100~800 kHz) was used
to measure the signals generated during the grind-
ing operation. The sensor was attached to the
center of a grinding machine. To avoid signal
attenuation during the transportation from the
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Table 1 Conditions for obtaining AE signals

Items Conditions
Grinding Type: WA60LmV
Wheel Size: $228 24 mm
Wheel
=27. 1800 RP
Speed V;=27.1 m/s (1800 RPM)
. Material: STDI11
Workpiece
Hardness: H;C 45
Workpiece
w=0.15~0.3
Speed Vu=0.1 0 m/s
Infeed 0.5 mm/m%n(75 p%eces)
Rate 1.0 mm/min (75 pieces)
2.0 mm/min (75 pieces)
Cutting
Fluid Dry Cut
Single Pointed Diamond Dresser
Dressing Depth of Cut: 0.0125 mm

Lead: 0.015 mm/rev

el

Wheel  Grinding Motor (AC)
Pt

Workpiece

Workpiece

i
Stepping Motor Infeed Handle
Power Supply | Pro-Amplifier
(40/60 dB)

lotetaco Bourd]  [AD Comverir )

l__l

Computer | | Computer 2
@ Pulse Control @ Save Data (Raw Signal)
o Infeed Control @ Data Processing
¢ Spark-Out ¢ RMS Peak

Fig. 1 Experimental setup for fault detection
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sensor to a computer, a pre-amplifier was con-
nected to the cable of signal flow and its auxiliary
function was to filter the noise that disturbs the
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sis. Stored signals were analyzed through data
processing. Grinding conditions used in monitor-
ing the AE signals are listed in Table 1.

AE signals. The raw AE signals were digitized

using an A/D converter Model PCL-818 and
stored using a personal computer for later analy-

3.2 Experimental Results and Discussions
Figure 2(a) shows typical AE signals obtained
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from the grinding operation. As in other metal
cutting processes, the raw signals are continuous
types and sharply fluctuate with grinding time.
The amplitudes of raw signals increase according
to the number of ground workpieces, but because
of the similitude in signals grinding states are not
always distinguished either stable or unstable.
Therefore, other analytic parameters are needed
to identify the grinding state. Figure 2(b) pres-
ents the signal to process the RMS with the raw
signal shown in Fig. 2(a). The changes in AE
signals are easily verified by an AE RMS level
and a distinctive type. The results of the frequency
analysis with the raw signals are drawn in Fig. 2
(c). The FFT amplitude is evident, especially
when the frequency ranges reach about 1.8 kHz
and 15 kHz. Because the wheel rotational fre-
quency is approximately 30 Hz, it can be seen that
a fault frequency is an integer multiple of the
wheel rotational frequency. When the sampled
values have a sufficiently strong central tendency,
then a standard deviation of the sampled values
may be useful for characterizing the set. The
standard deviation is the positive square root of
the variance that reveals the degree of distribution
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Fig. 4 FFT peak versus number of pieces

for the sampled data. Figure 2(d) presents the
distribution of AE signals, and it shows that the
stronger central tendency is in a stable grinding
state. Based on the above results, the parameters
of the AE signals for monitoring faults have been
selected, measured, and are shown in Figs. 3~6.

In Fig. 3, the peak values of RMS increase
gradually according to the number of grinding
pieces. It was found that the more the in-feed
rates are applied, the higher the level of the RMS
peak became. Figure 4 presents the peak values of
FFT. The FFT’s level maintains to a particular
piece, as an example, the 25th piece with 2.0 mm/
min in-feed rate, and after the 25th piece, the
peak level increases suddenly. The boundary
point of the change in peak values often implies
the fault generated. In this case, chatter marks
generated on the workpiece are experimently
observed.

Figure 5 shows the count outs of the threshold
over the 20 mV level of the acquired raw signal
that was enumerated with a computer program.
The threshold level is determined by a prelimi-
nary experiment. The increased count outs of the
threshold may be considered as a sign of a fault.
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Figure 6 presents the standard deviation of the
raw AE signals according to the number of grind-
ing pieces. It can be seen that the value of the
standard deviation increases when the number of
ground pieces increases. By varying the parame-
ters, a more effective diagnosis system for grind-
ing fault can be established.

4. Fault Detection System

Depending on the selection of the above param-
eters, especially the learning-rate and the momen-
tum coefficient, the performance of neural net-
works can vary widely. Therefore, it is necessary
to optimize the neural networks with optimal
parameters.

From the results shown in Fig. 7, which was
obtained through a preliminary study, the value
of the learning-rate and the momentum coeffi-
cient were found to be 0.6 and 0.8, respectively.

o 1T :ﬂ
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Learning Rate, o

(a) Learning rate versus squared error

Also, it was decided that the number of hidden
layers would be two.

Simulations for implementing the system for
diagnosing grinding faults were conducted on a
personal computer. Figure 8 shows the architec-
ture of the neural network used. The input units
were the peak of the RMS, the peak of the FFT,
the count out of the threshold, and the standard
deviation of AE signals. Normal, burning, and
chatter vibration states were used as the output
parameters, which had the interval values from 0
to 1. In comparison with these values of output
parameters, most major value of the parameters
indicates the state of the grinding operation.

Table 2 presents the values of input parameters
and the desired output based on the AE experi-
mental results. At the desired output, each pattern
has the value of unity (only one parameter) or
zero. For example, the neural network has
learned that the grinding pattern of AE-5 is

i I I
1400 Leamning Rate (@) : 0.6
Hidden Layer : 10-10
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(b) Momentum coefficient versus squared error

Fig. 7 Relationship between learning parameters and squared error

Input Layer  First Hidden Layer Second Hidden Layer

Output Layer

Fig. 8 Architecture of the neural network used in this study
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Table 2 AE supervised data for the learning of neural network

Input Parameters Desired Output
Pattern RMS Star.ld:%rd FFT Threshold Normal | Burning | Chatter
Peak Deviation Peak Count
AE-05 0.021 0.096 0.0200 0 1 0 0
AE-06 0.018 0.087 0.0081 0 1 0 0
AE-07 0.021 0.109 0.0138 0 1 0 0
AE-08 0.024 0.091 0.0093 0 1 0 0
AE-09 0.019 0.078 0.0069 0 1 0 0
AE-43 0.034 0.155 0.0245 10 0 1 0
AE-45 0.037 0.139 0.0409 23 0 1 0
AE-46 0.032 0.140 0.0223 9 0 1 0
AE-70 0.033 0.283 0.0490 48 0 0 1
AE-71 0.048 0.322 0.1130 626 0 0 1
AE-72 0.042 0.342 0.0664 931 0 0 1
AE-73 0.039 0.305 0.0569 607 0 0 1
AE-74 0.033 0.256 0.0382 68 0 0 l
Table 3 Recalled results of the AE data in neural network
Input Parameters
Pattern e Sardard = Outputs of Neural Network Results
Peak Deviation Peak Count Normal | Burning | Chatter
AE-05 0.021 0.096 0.0200 0 0.987990 | 0.010019 | 0.010521 | Normal
AE-06 0.018 0.087 0.0081 0 0.987986 | 0.010020 | 0.010523 | Normal
AE-07 0.021 0.109 0.0138 0 0.987993 | 0.010019 | 0.010518 | Normal
AE-08 0.024 0.091 0.0093 0 0.987988 | 0.010020 | 0.010522 | Normal
AE-09 0.019 0.078 0.0069 0 0.987984 | 0.010020 | 0.010525 | Normal
AE-43 0.034 0.155 0.0245 10 0.010223 | 0.813255 | 0.185224 | Burning
AE-45 0.037 0.139 0.0409 23 0.010218 | 0.813217 | 0.185274 | Burning
AE-46 0.032 0.140 0.0223 9 0.010221 | 0.813247 | 0.185241 | Burning
AE-70 0.033 0.283 0.0490 48 0.010217 | 0.013243 | 0.985249 | Chatter
AE-71 0.048 0.322 0.1130 626 0.010216 | 0.013242 | 0.985247 | Chatter
AE-72 0.042 0.342 0.0664 931 0.010216 | 0.013242 | 0.985251 | Chatter
AE-73 0.039 0.305 0.0569 607 0.010217 | 0.013242 | 0.985250 | Chatter
AE-74 0.033 0.256 0.0382 68 0.010224 | 0.014232 | 0.985243 | Chatter

normal, AE-43 indicates burning, and AE-70
indicates chatter vibration.

The recalled results that were obtained through
the iterative learning of the established neural
network are listed in Table 3. The outputs of the

neural network coincide with the desired outputs
shown in Table 2. This indicates that learning by
the neural network has been successful and that
this system for diagnosing grinding faults is able
to recognize the various grinding states.
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Table 4 Implementation results for new AE data

Input Parameters Outputs of Neural Network

Pattern I;::E ;:::Z:l II::;}; Count | Normal | Burning | Chatter Results

AE-10 0.014 0.075 0.0078 0 0.967983 | 0.010020 | 0.010525 | Normal
AE-11 0.023 0.116 0.0165 0 0.957995 | 0.010018 | 0.010517 | Normal (O
AE-12 0.023 0.111 0.0116 0 0.957993 | 0.010019 [ 0.010518 | Normal O
AE-13 0.019 0.097 0.0144 0 0.967990 | 0.010019 | 0.010521 | Normal (O
AE-14 0.019 0.105 0.0084 0 0.967992 {1 0.010019 | 0.010519 | Normal QO
AE-15 0.017 0.089 0.0108 0 0.947987 | 0.010020 | 0.010522 | Normal ()
AE-44 0.034 0.194 0.0409 11 0.010223|0.613252 | 0.386741 | Burning O
AE-47 0.034 0.155 0.0372 13 10.0102190.613252 | 0.386741 | Burning O
AE-48 0.033 0.158 0.0403 16 [0.010217}0.613253 | 0.386746 | Burning O
AE-57 0.035 0.191 0.0314 20 [0.010132]0.484631 { 0.542173 | Chatter X
AE-58 0.038 0.194 0.0410 24 10.010212]0.044217 | 0.563142 | Chatter X
AE-66 0.040 0.234 0.0450 156 |0.010219|0.413252{0.586742 | Chatter (O
AE-67 0.046 0.239 0.0493 | 258 |0.010221 | 0.42355 | 0.606744 | Chatter (O
AE-68 0.037 0.266 0.0451 114 |0.010221|0.373253|0.616745 | Chatter (O
AE-69 0.037 0.279 0.0387 94 |0.010217|0.313255|0.676741 | Chatter (O

Layer Structure
R 4553

4-10-10-3
B8 4.20-10.5-3

Burning Chatter
Grinding State
Fig. 9 Performance of the established fault diagno-
sis system

Table 4 lists the implementation results for new
AE data, which were not learned in the previous
step. In this case, the output values of the neural
network have a few changes compared with the
outputs listed in Tables 2 and 3. The normal
parameters shown in Table 4 have a higher con-
centration of unity values when the normal state
of the grinding operation is maintained. However,
burning and chatter vibration parameters have a
lower concentration of unity when burning or

chatter vibration state is generated. Some errone-
ous recognition was made in the boundary points
between burning and chatter vibration states.

Although lower concentration of unity and
erroneous results occurred, the recognizable per-
formance of the diagnosis system was very good.
Figure 9 shows the respective percentages of the
success rates according to the various layer struc-
tures in the diagnosis system. From Fig. 9, it is
evident that the maximum performance becomes
about 909§ when the layer structure of the neural
network is composed of 4-5-5-3 units.

5. Conclusion

A method using the AE signals has been devel-
oped for recognizing chatter vibration and grind-
ing burn in the cylindrical plunge grinding proc-
ess. The following conclusions can be drawn from
the results of this study:

(1) When grinding faults such as chatter vibra-
tion and grinding burn occur, the values of the
AE parameters for the peak of the RMS, the peak
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of the FFT, the standard deviation, and the count
out of the threshold all increase non-linearly. The
more the in-feed rates are applied, the higher the
levels of AE parameters become.

(2) The FFT amplitude is especially evident
when the frequency ranges reach about 1.8 kHz
and 15 kHz. Because the wheel rotational fre-
quency is approximately 30 Hz, it is seen that a
fault frequency is an integer that is a multiple of
the wheel rotational frequency.

(3) Depending on the selection of parameters,
especially the learning-rate and the momentum
coefficient, the performance of neural networks
can vary widely. To optimize a neural network
for fault diagnosis, the value of the learning-rate
and the momentum coefficient were respectively
determined to be 0.6 and 0.8. Also, the number of
hidden layers was determined to be two.

(4) Based on the implementation results of the
computer simulation for new AE data that were
not learned, it was found that the output values of
normal parameters have a higher concentration of
unity values when the normal state of the grinding
operation is maintained. On the other hand,
burning or chatter vibration parameters have
lower concentrations of unity values when the
burning or the chatter vibration occurs. Some
erroneous recognition was made in the boundary
point between burning and chatter vibration. The
maximum performance became about 9094 when
the layer structure of the neural network is optim-
ized.
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