• 제목/요약/키워드: Grid generation

검색결과 1,129건 처리시간 0.026초

한국서해안 해만의 방조제건설에 따른 조석변화연구 (A Study On The Change Of Tide Due to Barrage construction At The Bays Of The Western coast Of Korea)

  • 염기대
    • 한국해양학회지
    • /
    • 제12권1호
    • /
    • pp.33-40
    • /
    • 1977
  • 조석현상의 해석에 있어 수치해석모델은 수리모형실험과의 상호보완적인 역할로서 그 중요성이 점차 증가되고 있다. 수리모형실험에는 편방향(coriolis force), 해상의 바람에 의하여 야기되는 응력 및 대기압의 변화 등을 재현시키기 위한 복잡한 발생장치가 필요한 반면, 수치해석모델에서는 이들 요소들을 쉽게 모델 내에 재현시킬 수 있는 이점이 있다. 그러나 광대하고 복잡한 지형으로 이루어진 해역에 세밀한 격자망의 모델을 적용할 경우 막대한 비용과 시간이 요구되고, 이것을 피하기 위하여 격자간격을 크게 하면 안선부근에 심한 왜곡현상이 생기는 단점이 있다. 그러나 앞으로 computer의 용량이 점차 대형화해 가고 계산시간도 단축되어 가고 있으므로 이러한 단점은 점차 해소될 것이다. 여기서는 영국 Hydraulics Research Station의 Sparse Scheme을 이용하여 한국 서해안의 수개 조력발전대상 후보지역에 대한 방조제 설치전후의 조석변화양상을 구하여 보았다.

  • PDF

발전용 보일러의 최적연소조정기법에 대한 실험적 연구 (The Study of Optimized Combustion Tuning Method for Fossil Power Plant)

  • 정재진;송정일
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

가정용 연료전지 시스템의 단독운전 시 부하설비의 전압 및 전력품질 평가 (An Assessment on Voltage and Power Quality in Load Facility during the Islanding of Residential Fuel Cell System)

  • 박찬엄;정진수;한운기;임현성;송영상;김춘삼;임덕규
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1792-1797
    • /
    • 2013
  • Recently, due to the excessive use of fossil fuels, many studies about the fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be reason of power quality in the power system. In this paper, we constructed the system for an assessment on Islanding. The system is composed with power source, Impedance coordination load and linear load, fuel cell system. we are performed assessment on voltage and power quality in customer and the distributed power system during the Islanding of residential fuel cell system. In addition, no change in the impedance of power system, we made a islanding condition only using the actual load, As a variation of generation and load current under islanding, an analysis results based on assessment system showed that the power qualities of distribution system became more aggravation as effect of voltage sag and voltage swell phenomena.

특성곡선 해법 설계 극초음속 노즐의 경계층 보정 (Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics)

  • 김소연;김성돈;정인석;이종국;최정열
    • 한국항공우주학회지
    • /
    • 제42권12호
    • /
    • pp.1028-1036
    • /
    • 2014
  • 연구에서는 MOC 및 CFD를 이용한 극초음속 노즐 설계 절차를 수립하였다. MOC를 이용하여 설계된 비점성 노즐 형상에 대하여, 점성 유체 전산 해석을 통하여 경계층 두께를 산출하여 노즐 형상을 보정하였다. 여러 가지의 경계층 두께 정의를 비교한 결과, 노즐 단면 최대 속력의 95% 속력을 가지는 경계층 두께의 정의가 설계 마하수를 가장 잘 만족하는 것으로 여겨진다. 노즐 설계과정은 MOC 설계에 대한 격자 형성, 비점성 해석 및 점성 해석, 경계층 보정 및 점성 해석에 의한 확인 및 결과 도출의 순서로 진행되며, 모든 과정은 자동 일괄 처리토록 작성되었다.

선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석 (Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship)

  • 모장오;김유택;김만응;오철;김정환;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.175-181
    • /
    • 2011
  • 본 연구에서는 선박용 폐열회수 발전시스템에 적용 가능한 100kW급 구심터빈의 설계 및 CFD 해석기법을 이용하여 열사이클 시스템 및 구심터빈 최적화를 위한 설계자료를 확보하는 것이다. 구심터빈은 스크롤 케이싱, 18개의 베인노즐, 13개의 로터 블레이드로 구성되며, 해석격자는 격자테스트를 통해 약 230만개 정도의 최적격자를 구성하였다. 질량유량 0.5kg/s, 회전속도는 75,000rpm, 입구압력은 195~620kPa 범위 내에서 8가지 조건으로 설정하였다. 베인노즐 내부로 증기가 유입된 후 출구로 갈수록 노즐의 압력면과 흡입면의 압력이 비슷해지면서 마하수가 거의 같은 값을 보였다. 입구온도와 압력이 $250^{\circ}C$, 352kPa 일 때 등엔트로피 효율은 74%, 기계동력은 108kW의 해석결과를 보이고 있다.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

有限要素法을 이용한 海水流動解析 (II) (Analysis of Tidal Flow using the Frequency Domain Finite Element Method (II))

  • 권순국;고덕구;조국광;김준현
    • 한국농공학회지
    • /
    • 제34권2호
    • /
    • pp.73-84
    • /
    • 1992
  • The TIDE, finite element model for the simulation of tidal flow in shallow sea was tested for its applicability at the Saemangeum area. Several pre and post processors were developed to facilitate handling of the complicated and large amount of input and output data for the model developed. Also an operation scheme to run the model and the processors were established. As a result of calibration test using the observed data collected at 9 points within the region, linearlized friction coefficients were adjusted to be ranged 0.0027~0.0072, and water depths below the mean sea level at every nodes were changed to be increased generally by 1 meter. Comparisons of tidal velocities between the observed and the simulated for the 5 stations were made and obtained the result that the average relative error between simulated and observed tidal velocities was 11% for the maximum velocities and 22% for the minimum, and the absolute errors were less than 0.2m/sec. Also it was found that the average R.M.S. error between the velocities of observed and simulated was 0.119 m/sec and the average correlation coefficient was 0.70 showing close agreement. Another comparison test was done to show the result that R.M.S. error between the simulated and the observed tidal elevations at the 4 stations was 0.476m in average and the correlation coefficients were ranged 0.96~0.99. Though the simulated tidal circulation pattern in the region was well agreed with the observed, the simulated tidal velocities and elevations for specific points showed some errors with the observed. It was thought that the errors mainly due to the characteristics of TIDE Model which was developed to solve only with the linearized scheme. Finally it was concluded that, to improve the simulation results by the model, a new attempt to develop a fully nonlinear model as well as further calibration and the more reasonable generation of finite element grid would be needed.

  • PDF

State-of-the-art 3D GIS: System Development Perspectives

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun;Yang, Young-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.153-158
    • /
    • 1998
  • Since the mid-1990′s, researches on 3D GIS have been regarded as one of main issues both in the academic sites and commercial vendors; recently, some prototyped systems or the first versioned software systems of commercial basis are being reported and released. Unlike conventional 2D GIS, which consists in intelligent structured GIS or desktop GIS, every 3D GIS has its own distinguished features according to data structure-supporting capability, GIS-styled functionality, external database accessibility, interfacing extents with 2D GIS, 3D visualization/texture mapping ability, and so forth. In this study, technical aspects related to system development, SERI-Web3D GIS ver. 1.2, are explained. Main features in this revised 3D GIS can be summarized: 2-tier system model(client-server), VGFF(Virtual GIS File Format), internal GIS import, Feature manager(zoning, layering, visualization evironment), Scene manager(manage 3D geographic world), Scene editor, Spatial analyzer(Intersect, Buffering, Network analysis), VRML exporter. While, most other 3D GISes or cartographic mapping systems may be categorized into 3D visualization systems handling terrain height-field processing, 2D GIS extension modules, or 3D geometric feature generation system using orthophoto image: actually, these are eventually considered as several parts of "real 3D GIS". As well as these things, other components, especially web-based 3D GIS, are being implemented in this study: Surface/feature integration, Java/VRML linkage, Mesh/Grid problem, LOD(Level of Detail)/Tiling, Public access security problem, 3-tier architecture extension, Surface handling strategy for VRML.

  • PDF

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Python 기반 WSCR 강건 지수를 이용한 미래계통 구축에 관한 연구 (A Study on Future System Construction Using WSCR Strengthness Index based on Python)

  • 박성준;허진;김현진;조윤성
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.994-1001
    • /
    • 2018
  • In this paper, to studied about future power system construction using PSS / E-Python API. Python-based future system automatical construction methods and modeling of renewable sources. it confirmed the stability of the powert system for each renewable area by calculating the weighted short circuit ratio (WSCR) index. it calculated the short circuit ratio (SCR) and selected the transmission line linkage scenario to improve the stability of vulnerable areas. it confirmed the WSCR index improvement through the selected transmission line linkage of scenario, and analyzed the stability of the renewable power system applying the scenario. It describes Facts and Shunt devices adjustment for the load flow convergence. It describes the stable methed of the bus voltage through the transformer Ratio Tap adjustment. By performing PSS/E ASCC using the Python it was performed three-phase short circuit fault capacity analysis, it is confirmed whether excess of the fault current circuit breaker capacity. In order to contingency accident analysis, it have described the generation of one or two line list of each areas using the Python. The list is used to contingency analysis and describe the soluted of the transmission line overload through comparison before and after adding the scenario line.