• 제목/요약/키워드: Grid element

검색결과 458건 처리시간 0.022초

Near-tip grid refinement for the effective and reliable natural element crack analysis

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.279-287
    • /
    • 2019
  • This paper intends to introduce a near-tip grid refinement and to explore its usefulness in the crack analysis by the natural element method (NEM). As a sort of local h-refinement in FEM, a NEM grid is locally refined around the crack tip showing the high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane-state plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for the sake of comparison. The near-tip stress distributions and SIFs that are obtained using a near-tip refined NEM grid are compared with the exact values and those obtained using uniform NEM grid. The convergence rates of global relative error to the total number of grid points between the refined and non-refined NEM grids are also compared.

효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법 (A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method)

  • 조진래
    • 한국전산구조공학회논문집
    • /
    • 제32권3호
    • /
    • pp.183-190
    • /
    • 2019
  • 본 논문은 균열선단 그리드 세분화기법을 소개하고 자연요소법을 이용한 균열해석에 이 기법을 적용함으로서 그 유효성을 고찰하였다. 유한요소법에 있어서의 국부적 h-세분화와 같이 높은 응력 특이성을 보이는 균열선단 주위를 따라 자연요소법 그리드를 국부적으로 세분화하였다. 본 논문에서 소개되는 그리드 세분화기법은 2단계로 구성되며, 1단계에서는 그리드 점들이 추가되고 2단계에서는 균열선단 절점을 공유하는 델라우니 삼각형들이 나뉘게 된다. 제안하는 그리드 세분화기법의 타당성과 균열해석에서의 유효성을 입증하기 위해 대칭 엣지 균열을 갖는 평면 변형률 상태의 사각 평판을 해석하였다. 수치해석 결과의 상대비교를 위해 균일한 자연요소 그리드를 이용한 균열해석도 수행하였으며, 균열선단이 세분화된 그리드는 균일한 그리드와는 달리 이론해와 조밀한 그리드와 유사한 균열선단 응력분포를 나타내었다. 또한, 총 그리드 절점수에 대한 해석결과의 전역 상대오차에서도 세분화된 그리드가 균일한 그리드에 비해 높은 수렴율 나타내었다.

3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석 (Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique)

  • 김기돈;정준호;양동열
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성 (Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements)

  • 이주명;백승범;이강훈;김조순;정진훈
    • 한국도로학회논문집
    • /
    • 제19권3호
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

Further Development of Vision-Based Strain Measurement Methods to Verify Finite Element Analyses

  • Kim, Hyung jong;Lee, Daeyong
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.343-352
    • /
    • 1996
  • One of the preferred methods that can be used to verify the results of finite element analysis is to measure surface strains of the deformed part for purpose of direct comparison with simulation results. Instead of using the usual manual method the vision-based measurement method is capable of determining surface geometry and strain from the deformed grid pattern automatically with the help of a computer. To obtain strain distribution over an area, the coordinates of such a surface grid are determined from the multiple video images by applying the photogrammetry principle. Methods to improve the overall accuracy of the vision-based strain measurement system are explored and the possible accuracies that can be attained by such a measurement method are discussed. A major emphasis is placed on the initial grid application method its accuracy and ease of subsequent image processing. Finite element analyses of limiting dome height(LDH) test are carried out and the results of them are compared with exsperimen-tal data.

  • PDF

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF

Vibration analysis of functionally graded material (FGM) grid systems

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.395-408
    • /
    • 2015
  • The paper considers the free vibration analysis of FGM grid systems. Up to now, very little work has been done on this type of system and the paper aspires to fill this gap. Based on the hybrid-stress finite element formulation free vibration solutions for FGM grid systems of various aspect ratios, different types of gradations functions, and support conditions are determined. The tabulation of these results, not available thus far, should be useful to designers and researchers who may use them.

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA

  • Kim, Mi-Young;Park, Eun-Jae;Thomas, Sunil G.;Wheeler, Mary F.
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1103-1119
    • /
    • 2007
  • We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.

다중익형 공력 계산을 위한 특화 격자생성 프로그램 개발 (DEVELOPMENT OF SPECIALIZED GRID GENERATION PROGRAM FOR MULTI-ELEMENT AIRFOIL AERODYNAMIC ANALYSIS)

  • 남도우;이영준;이종윤;김병수
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.85-89
    • /
    • 2016
  • Wing is the most important part of aircraft which produces lift. In general when aircraft takes off or lands, high lift is required and additional devices are adopted in front and aft-side of wing, which constitute so-called multi element airfoils. The objective of this research is to develop a specialized grid generation program to help engineers in reducing human labor and eliminating time-consuming process for mesh regeneration by deforming the initially-given grid system with efficient deforming method. This paper describes briefly about the mesh deformation methods, and provides some results to verify the quality of deformed mesh and eventually correctness of current approach.

지지격자로 지지된 모의 연료봉의 진동특성 (Vibration Characteristics of a Dummy Fuel Rod Supported by Spacer Grids)

  • 최명환;강흥석;윤경호;김형규;송기남
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.424-431
    • /
    • 2003
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods and maintains coolable geometry from an external load. A vibration test and a finite element analysis using ABAQUS on a dummy fuel rod continuously supported by Optimized H type(OHT) and New Doublet (ND) spacer grids arc performed to obtain the vibration characteristics such as natural frequencies and mode shapes an(1 to verify a finite element model. The results from the test and the finite element analysis are compared by modal assurance criteria (MAC) values. It is resulted that MACs for the first, the third and the fifth mode shapes are relatively good as compared with those of the second an(1 fourth ones. The natural frequency differences between two methods as well as the mode comparison results for the rod with OHT spacer grid are better than those with ND spacer grid. It is judged that the FE model for the ND spacer grid spring should be modified to consider the long contact length which actually happen when the spring supports the rod.