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ABSTRACT

In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element
with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees
of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate
load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum
limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need

to be designed to be buckled in skin-buckling mode.
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1. Introduction

The weight reduction of structures is major concern for
the high performance of aerospace vehicle. Grid-stiffened
composite structures such as isogrid structures are prom-
ising advanced light-weight structures, which can sub-
stitute the metal grid structures and sandwich structures.
Since grid-stiffened structures are made thin for the weight
saving, they are weak under compressive loads. Thus
buckling analyses are very important to decide structural
design parameters. However, the buckling modes of the
stiffened structures are quite complicated because both the
skin and stiffeners are buckled simultaneously in the opti-
mized configuration. The smeared macro-cell model
which was used in the static analysis (Chen and Tsai,
1996) is not applicable to the buckling analysis.

The analytical approach by Rayleigh-Ritz energy method
with Lagrange multiplier compatibility constraints was
developed by Giirdal (Giirdal and Grall, 1994; Giirdal and
Gendron, 1993; Phillips and Giirdal, 1990, 1992). How-
ever, for the problems with complex boundary geometry
such as cutouts, finite element method is preferred. In the
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isogrid and cross-stiffened structures, compatibility con-
dition at the interface between skin and stiffeners needs to
be satisfied. To meet this condition, the drilling degrees of
freedom need to be employed in the in-plane dimension of
the skin. This drilling degrees of freedom of skin is
matched with the bending rotational angles of the stiff-
eners. In the present study, two four-noded finite elements
are developed for composite grid-stiffened plates. Both of
them have drilling degrees of freedom. One is an iso-
parametric and the other is an assumed stress hybrid ele-
ment. The motivation of the second one is to reduce the
mesh sensitivity effect in the distorted mesh configurations.

The buckling analysis of the grid-stiffened structures
requires a great amount of computer resource since they
require a large number of meshes to describe local and
global buckling modes. Especially for the weight opti-
mization, repeated buckling analyses are required. Thus,
efficient computation of buckling analysis plays a key role
in the optimization program. Therefore, the present study
aims at the development of an efficient linear finite ele-
ment buckling analysis for the grid-stiffened structures.

2. Formulation

The four-noded hybrid shell element for isotropic mate-
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rials developed by Aminpour (Aminpour, 1992; Renga-
rajan et al., 1995) is the one with excellent performance in
the linear analysis among the existing four-noded ele-
ments. In the present study, we extend this element to the
buckling analysis of composite stiffened structures. First
of all, in the element development, the drilling degree of
freedom needs to be added in the nodal degrees of free-
dom, because the rotational degrees of freedom of stiffener
are not matched with those of skin in the Mindlin plate
model. Drilling degrees of freedom are defined as the rota-
tional degrees of freedom normal to the plane of the ele-
ment.

To compare the performance of Aminpours hybrid shell
element with that of isoparametric element with drilling
degrees of freedom, Allman-type shape functions are used
(Allman, 1984; Cook et al., 1986). This element has the
same displacement field as that of Aminpours hybrid ele-
ment.

In the linear buckling analyses, two types of loadings are
considered. One is stress loading, and the other is dis-
placement loading. The load distributions of grid-stiff-
ened structures depend upon the skin thickness, stiffener
thickness and height. The calculation of load distribution
that should be performed before the buckling analysis is
carried out. Thus in the present study, the two step buck-
ling analysis is performed. The first step is to calculate
stress distribution by static analysis, and the second step is
to analyze linear buckling with the load distributions com-
puted by the first step.

2.1 Assumed-Stress Hybrid Element Formulation

This hybrid element was originally developed by Amin-
pour and the formulation is simply outlined here. The
detailed description and benchmark examples are given in
Ref 8.

The present hybrid element formulation is based on
Hellinger-Reissner variational principle. The Hellinger-
Reissner functional can be written as

1y =_%jv{o}T[S]{c}dV+ [y IL}{u}av
T
—IS {u} {1,}dS ()
where [S] is the compliance matrix, and [L] is the linear
differential operator on the displacements {u} to produce

strains.
The stress and the displacement field are described as

{o} =1PH{B} @

{u} = [NHq} 3

where [P] and [N] are matrices of stress and displace-
ment interpolation functions, and {8} and {gq} are the
unknown stress parameter and nodal displacement vec-
tors,respectively.

Imposing stationary conditions on the functional HR,
finally we can get the following equations.

{B} = [H]"'[T){q} )
(K] = [T]"(H)'[T] ‘ (5)
[K1{q} = {F} (6)
where

[H] = jv[P]T[S][P]dv )
[1] = JV [PY[LIIN]AV ®)
{F}= js [N1'{1,}dS 9)

where V, S, and {z} are the volume of the plate, stress
prescribed boundary and traction vector given along the
boundary. By solving linear stiffness equations given in
Eqn(6), the conventional nodal displacement vectors can
be obtained.

2.2 Assumed-Stress Field
The membrane part of assumed-stress field can be
expressed in the natural coordinate system.

Ne= ﬁ1+ﬁ4€+ﬂ6n+ﬁsn2
Ny = B+ Bs&+ Byn+ By (10)
Nén = ﬁ3_/5477—57§

The bending part of assumed-stress field is also given in
the natural coordinates(i.e. £-7 coordinates) as follows
M = B+ B&+Pen +Bsn’
M, = By +BsE+Bon +Bon’
— — — 1 — 1=
Mgy = Bs+ Bro&+Pun+ 5[312521“ 5513772

an
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The shear resultant fields are given by satisfying plate
equilibrium equations.

Q¢ = Ba+ Bi1 + P

- - - (12)
0, = Br+ B+ Pr2é

2.3 Displacement Field

To handle drilling degrees of freedom, the Allman-type
shape functions are used. The in-plane field has quadratic
displacement functions considering the difference of drill-
ing rotations.

4 4 Ay, .
w(€mn) =y Nu;+ z_glNi(ezj_ezi)

i=1 i=1

(13)
4 4 Ax. .
“o(&yn) = ZNI'D’--Z?!NI,(GZJ__GZ[)
i=1 i=1
where
AX',‘ =xj - X, Ayz :yj -y
i=i(1+§i<:)(1+1’]i‘r‘|)’ i=1,2,3,4 (14)
1 «
. |[3(1-Eh+nm), i=1,3
A P (15)
2a-M)(1+E8), i=2,4
and
. l+1, l=1’2’3
The out-of-plane displacement field is given by
o 4 4 Ay,
v (&’n) = ZN[Wi N z_g—_Ni(exj—exi)
i=1 i=1
4 Axi *
+Z?Ni(9yj—6y.)
i=1
4
6.&m) = Y N8,
N (16)

4
9y(§,ﬂ) = ZNiey[
i=1

where 6, 6 are rotational field and 6,, 6, 6, are the
nodal rotational displacements. Using Eqns (10), (11).
and (12) for stress fields and Eqns (13) and (16) for dis-
placement fields, the final element equation can be

Computational Structural Engineering 1 (2003) 19~29 21

obtained in the form of Eqn(6).

2.4 Geometric Stiffness Matrix
The geometric stiffness matrix is derived by using the
full non-linear Green-Lagrange strain tensor.

_1(0u; du; Judu,
5= 2(5}5-‘- ox; * ox; axj) (17

Using Mindlin kinematic assumptions, strains can be
expressed by two parts such as membrane and bending
strains.

{e}={e"}+z{k} (18)

The membrane strains can be written as Eqn(19).

{e” = {ep}+{en} (19)
where ey, is a nonliear strain part. The generalized Hell-
inger-Reissner functional including the non-linear strains
can be written as Eqn(20).

Hyp =3, 40y IS HoYav+ [, {0} LI {u}dv .

-f, {0, Teh 1dv=[ {u}'{1,}ds

where {c,} is the prescribed prebuckling stress state.
Upon substitution of the displacement and stress approx-
imations, Hellinger-Reissner functional reduces to Eqn(21).

e = -3 BYTH{BY+ {BY [T q}- {q} {F}
2 21

+3{aY 1K) {g)
The geomatric stiffness matrix [K_] is given by Eqn(22).
[Ko] = |, INI'TGI IY)[GI[N]dA (22)

where A means the integral domain
The matrix [G] and [Y] is written as Egn(23) and Egn(24).

9, 0 0 00 0
3,0 0000
09,0000
|Gl = (23)
09,0000
000,000
0 09,000
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[¥] = (24)

S O
S n O
Yn © O

where § is the matrix of prebuckling stress state.

[Nz NO}
S= ’

(25
N, )

where the superscript ° means the prebuckling state. Using
the stiffness matrix in Eqn(5) and the geometric stiffness
matrix in Eqn(22), we can solve the eigenvalue problem of
linear buckling.

3. Numerical Examples

In this section, two categories of examples are shown.
The examples of one category are to assess the perfor-
mance of hybrid element in the mesh distortion, and the
other is the parametric study for the grid structures. To
evaluate the developed hybrid element performance in the
grid-stiffened composite structures, the examples of buck-
ling analyses of cross-ply composite rectangular plate and
1-cell/3-cell cross-stiffened panel are considered. In order
to investigate the effect of stiffener size in grid structures,
the parametric studies of cross-stiffened structures and iso-
grid structures are presented. The buckling analysis of
cross-ply composite rectangular plate in the first example
is performed under the stress loading, and the analyses of
grid structures are performed under the displacement load-
ing.

In the following examples, the isoparametric element
indicates the displacement-based element with drilling
degrees of freedom and hybrid element indicates the
Aminpour’s hybrid element. For the convenience of com-
parisons, only eigen problem routine by inverse power
method is considered in calculating solving time, and it is
normalized with respect to that of the minimum mesh con-
figuration at each examples. The examples of one category
are for the assessment and the examples of the other are
for parametric study.

3.1 Composite Rectangular Plate

This example shows the performance of the proposed
hybrid element both in the uniform meshes and in the dis-
torted mesh configurations. In the cross-stiffened and iso-
grid plates and shells, stiffeners are attached to the skin
with the inclined angles. To satisfy the displacement com-
patibility between stiffeners and skin plates, the distorted

mesh configuration cannot be avoided. Therefore, the per-
formance of the plate buckling in the distorted mesh con-
figuration is critical.

Regular mesh configuration is shown in Figures 1(a) and
1(b). Figure 1(a) shows 8 x 8 mesh, and 16 x 16 mesh con-
figurations are shown in Figure 1(b). The number of ele-
ments in Figures 1(a) and 1(b) are 64 and 256, and each of
them has 486 and 1734 degrees of freedom, respectively.
Figures 1(c) and 1(d) show the distorted mesh config-
uration. Figure 1(c) has 48 elements with 342 D.O.Es’,
and Figure 1(d) has 192 elements with 1254 D.O.F.s’ The
side length of square plate is 10 inch and thickness is 0.1
inch. The material properties are given in Table 1. The
plate is a cross-ply composite laminate with [90/0/90]s
layups and all edges are simply-supported. The numer-
ical results of regular mesh and distorted mesh are in
Tables 2 and 3. Nondimensionalized critical buckling
loads are defined as

2
N=N,~— (26)
E,h

Where N, a, and & are the critical buckling load, in-
plane characteristic length and thickness of the plate. E, is
the elastic modulus in the direction perpendicular to the
fiber alignment. The exact solution is given in the Ref 11.
As shown in Table 2, the values of buckling loads of both
elements converge rapidly. The resuits of the hybrid ele-
ment converge more rapidly than those of the isopara-
metric element with drilling D.O.E, but the advantage of
the rate of convergence of the former over the latter is mar-

(c} Distorted Mesh

(d) Refined Distorted Mesh

Fig. 1. Mesh Configuration of Rectangular Plate



Maenghyo Cho and Won Bae Kim

Table 1. Lamina Properties in Cross-Ply Laminates

Computational Structural Engineering 1 (2003) 19~29 23

Table 3. Buckling Loads for Distorted Mesh Configuration

Longitudinal Modulus E, = 10.0 X 10° {bf=in’ # of Element 12 48 192 768

Transverse Modulus E, = 0.1 X E' #of D.OF. 102 342 1254 4806

In-Plane Shear Modulus G,, = 0.5 X E? Solving Time 1 9 117 1631

Transverse Shear Modulus G,, = 0.2 X E? Iso-Parametric Element 2856  11.75  11.22  11.14

In-Plane Poisson’s Ratio vy, =0.25 Hybrid Element 1092 1111 11.10  11.10
Exact 10.83

ginal. However, as shown in Table 3, the accurate buckling
predictions are provided by the hybrid element even in the
distorted coarse meshes(12 element case), which cannot
be expected in the isoparametric element.

3.2 1-Cell/3-Cell Cross-Stiffened Plate

Before analyzing multi-cell plates, only one-cell stift-
ened plate with cross-stiffener was analyzed with both the
isoparametric element with drilling D.O.F. and the hybrid
element. The geometric configuration is shown in Figure
2. It has 112 elements and 750 degrees of freedom.

The each side lengths of skin part(both x and y direc-
tions) are 28 inch, and the thickness is 0.2 inch. A quasi-
isotropic layups are considered and the stacking sequence
is [£45/0/90]s. The thickness of stiffener is 0.2 inch with
8-ply of 0 degree, and the height is 0.5 inch. The material

Table 2. Buckling Loads for Regular Mesh Configuration

# of Element 16 64 256 1024
#of D.OF. 150 486 1734 6534
Solving Time 1 8 97 1312
Iso-Parametric Element 11.89 11.26 11.16 11.13
Hybrid Element 1092  11.07 1110 11.11
Exact 10.83

Fig. 2. Mesh Configuration of 1-Cell Cross-Stiffened Plate

properties are given in Table 4. All the boundaries are sim-
ply-supported and the buckling results are given in Table
5.

The convergent buckling load is around 970~980 /bf/in
according to the analysis of the very refined meshes
(11,046 D.O.F.). With smaller solving time, the hybrid ele-
ment provides very accurate buckling load within 1%
error. Even in the very coarse meshes with about 100 ele-
ments, the relative error by the hybrid method is only
within 3%. However, the isoparametric element provides
poor prediction of buckling load, in which the relative
error is up to 17%. The accuracy of errors within 3% and
the efficiency of solving time less than 2 seconds should
be emphasized. For example, in a problem of structural
optimization considering buckling that requires repeated
computations, solving time can be reduced tremendously.

The buckling of 3-cell cross-stiffened plate was ana-
lyzed. They can be considered as the component of aircraft
wing or fuselage. The material properties are same as
those in the case of one-cell and the geometric dimensions
are 28 inch and 80 inch. Uniaxial compression is applied
along the 80-inch edge. The mesh configuration is shown

Table 4. Lamina Properties in Cross-Stiffened Plate
Longitudinal Modulus E, = 18.5 x 10° lbf/in’
Transverse Modulus E, = 1.64 x 10° Ibf/in®
In-Plane Shear Modulus G, = 0.87 x 10° Ibf/in®
Transverse Shear Modulus G,, = 0.54 x 10° Ibf/in’

In-Plane Poissons Ratio v, = 0.30

Table 5. Buckling Loads of 1-Cell Cross-Stiffened Plate

# of Element 112 448 1792
#of D.OF. 750 2838 11046
Solving Time 1 12 79

Iso-Parametric Element 1133.1 1002.6 969.7
Hybrid Element 1003.6 972.8 975.9

(Ibffin)
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in Figure 3. All the boundaries are simply-supported and
the results of the buckling analysis are given in Table 6.
While the convergence of isoparametric element is quite
slow, the hybrid element shows much faster convergence.
The accuracy of more than 30,000 D.O.Es’ by the iso-
parametric element with almost one hour computation
time can be achieved by only 8,000 D.O.Es’ hybrid ele-
ment within five minutes. The computational efficiency is
greater as the number of the repeated grid increases.

3.3 Parametric Studies of Cross-Stiffened Plate

In the design of grid structures, there are many design
parameters such as skin thickness, skin and stiffener
layups, stiffener thickness and height, grid type, number of
grid, and so on. This example shows how buckling loads
and modes of cross-stiffened plates change as the number
of grid and the height of stiffeners change. The 2-cell, 3-
cell, and 4-cell cross-stiffened plates are considered. To
apply same weight condition, cross-sectional area of stiff-
ener is kept constant (0.01 in?).

The buckling loads vs. the height of stiffener are shown
in Figure 4. Stiffener height varies from 0.4 in to 1.0 in in
each case.

There are three types of buckling modes in grid-stiffened
structures. The first one is a global-buckling mode as

Fig. 3. Mesh Configuration of 3-Cell Cross-Stiffened Plate

Table 6. Buckling Loads of 3-Cell Cross-Stiffened Plate

# of Element 336 1344 5376
#of D.OF. 2094 8214 32550
Solving Time 1 12 172

Iso-Parametric Element 926.0 669.4 640.9
Hybrid Element 693.6 646.6 636.5

(ibflin)

shown in Figure 5(a). In this case, the role of stiffener is to
add bending rigidity to skin. Therefore, within the global
buckling mode range, the buckling loads increase as the
height of the stiffeners increase.

The second is a local skin-buckling mode. Stiffeners do
not show in-plane bending behavior(see Figure 8(a)) since
this behavior requires large deformation energy. Instead,
they tend to show out-ofplane bending behavior(see Fig-
ure 8(b)). However, in spite of out-of-plane bending
behavior of the stiffeners, the deformation energy of this
mode of stiffener is very small compared to that of skin in
the skin-buckling mode (See Figure 6(d)).

The third mode is stiffener-buckling mode. This mode is
observed when the load ratio of stiffener to the skin is rel-
atively high and the thickness of the stiffeners are rel-
atively small. In this case, skin has no out-of-plane
deformation and only stiffeners are buckled. This mode is
not observed in the present analysis of the practical range
of application of the stiffener height.

The buckling loads of 2-cell cross-stiffened structures
increase as the height grows. As shown in Figure 5(c),
mode transition from global to skin-buckling occurs. From
the buckling modes of the Figures 6 and 7, and buckling
loads in Figure 4, it is observed that buckling loads of 3-
cell and 4-cell crossstiffened plates in the range of 0.4~ 1.0
in depend on the types of buckling modes. In the case of
0.4 in height, the buckling mode shape is the mixed one
between global-buckling and skin-buckling mode. As the
stiffener height becomes higher than 0.6 in, the buckling
modes and loads do not have significant changes. If the
stiffener height is larger than 1 in, then the buckling mode
shapes and buckling loads are almost the same.

From the parametric study, it is observed that there is a
critical height of the stiffener in which the buckling mode

1000 - - o
F - - - ® R
F R
WOF ~ ~ - - T - - - - - - - - -
L
o~
£ F
G TO0F - — — — - = = = m— — o m — e e e e
=2 F e ‘ ! -
%’ B0 — - — - & - — - — - - — - - - — - — - —
o r
S S0f - - - —— - —— - — - e
~ F - *—® M *
& a0 - - - - — - ¥ L.
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s ()
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100F - - - - - — — — — — — — — —@— 2-Cell
E L 1 I )
%2 0.4 0.6 0.8 1
Stiffener Height (in)

Fig. 4. Buckling Loads of Cross-Stiffened Panel
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) h=0.60in

v

(€} h=0.80in

(d) h = 1.004n

Fig. 5. Buckling Modes of 2-Cell Cross-Stiffened Plate

transition occurs. Once the mode change occurs from glo-
bal to local skin buckling mode, the buckling load
becomes almost the maximum critical value. The buckling
load does not change significantly even though the stiff-
ener height becomes larger than critical height.

3.4 Parametric Studies of Isogrid Plates

In the present analysis, the stiffeners are located only on
the upper skin. This isogrid construction is applicable
when smooth surface is required such as fuselage and
wing skin of aircraft structures. In the present study, the
geometry of skin is 21.5 in long and 18.6 in wide, 0.07 in
thick, and [(£60/0),] layups. Only [(0),] plies are arranged in
the stiffener layups. The material properties are shown in
Table 7. Displacement loading is applied on the long side
edge in the parametric study. Boundary conditions are
given in Figure 9. In the horizontal edges, the translational
displacements u,w, and drilling degrees of freedom 6, are
fixed for both skin and stiffeners. In the vertical edges, dis-
placements # and w are fixed in skin and stiffeners, but
drilling degrees of freedom pz are constrained on the skin
only.

In the parametric study of isogrid structure, two types of
grid configuration are considered. One is a large-cell iso-
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(a) h = 0401in

(®) h=0.60in

(c) h = 0.80 in

(@) h=1.00in
Fig. 6. Buckling Modes of 3-Cell Cross-Stiffened Plate

Table 7. Lamina Properties in Isogrid Pane

E, =25.1 x 10° Ibf/in*
E,= 1.1 x 10° Ibffin?
G,,= 0.8 x 10° Ibffin*
v,,=0.33

Longitudinal Modulus
Transverse Modulus
In-Plane Shear Modulus

In-Plane Poissons Ratio

grid, and the other is smaller-cell isogrid case. In each
case, mesh configurations are shown in Figures 12(a) and
13(a).

Buckling modes of large-cell isogrid panel are shown in
Figure 12. For the parametric study of large-cell isogrid
panel, coarse mesh with 240 elements and 1482 degrees of
freedom is used.

As shown in Figure 10, all three types of buckling
modes appear as the stiffener height varies. In the smaller
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(d)y h=1.001in

Fig. 7. Buckling Modes of 4-Cell Cross-Stiffened Plate

height of stiffener (0.1 in <stiffener height <0.3 in), the
global buckling mode appears, which is also shown in Fig-
ure 12(b). As discussed in the cross-stiffened plate case,
the buckling loads are getting higher as the bending rigid-
ity of stiffener becomes larger.

The stiffener height equal to about 0.3 in, the mode tran-
sition from the global to local skin buckling occurs and the
buckling loads become constant and reaches the maxi-
mum. The role of stiffener is to give constraint to generate
local higher buckling mode as shown in Figure 12(c).

If the stiffener height is larger than a certain critical
value, then stiffener buckling occurs and the buckling
loads rapidly decrease, which is depicted in Figure 10. In
this buckling mode, there is no deformation energy stored
in the skin plate. The mode shape is given in Figure 12(d).

From the parametric study, it is observed that as the

(b) Out-of-Plane Stiffener Bending

Fig. 8. In-Plane and Out-of-Plane Bending Deformation of Stiff-
ener

Fig. 9. Configuration of Isogrid Plate

cross-sectional area of stiffener is getting larger, the local
skin buckling zone become wider. Thus we have more
flexibility in the selection of stiffener height for the struc-
tural design when the relatively large cross-sectional area
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Fig. 11. Buckling Loads of Isogrid Panel

(c) Skin-Buckling Mode

Fig. 12. Mesh Configuration and Buckling Modes of Isogrid Panel
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of isogrid stiffeners are considered.

If there are no stiffeners, the buckling load of skin is
20.2 Ibf/in and the volume is 28.02 in®. In the case of rib
area is given as A, = 0.01 in’, the volume of stiffener is
1.505 in® and is about 5% of that of skin. But the buckling
loads are as large as 10 times of the case that there is only
skin.

In the analyses of smaller-cell isogrid structures, refined
mesh configuration required 3456 elements and 20478
degrees of freedom as shown in Figure 13(a). The coarse
mesh configuration of this structure has only 864 elements
and 5058 D.O.FE.’s, and buckling mode and buckling loads
are within 3% difference from those of the refined mesh
case. To save computing time, coarse mesh configuration
has been used in small-cell isogrid analysis. Its skin geom-
etry is the same as large-cell and the difference between
these two types of structures is only the number of grid.

Numerical results of the analysis of the smaller-cell case
are in Figure 11. The qualitative buckling behavior of this
case is similar to the case of larger-cell isogrid (see Figure
13(b)~13(d}), but the buckling loads are much larger com-
pared to the case of large-cell. This is because the local
skin-buckling mode of smaller-cell needs more bubbles
(higher mode) than that of large-cell. In the smaller cross-
sectional area of stiffener(A , = 0.01), no local skin buck-
ling modes are observed. Thus maximum buckling loads
occur at the transition from the global mode to the stift-

(b) Global-Buckling Mode

(d) Stiffener-Buckling Mode
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(a) Isogrid mesh configuration

{¢) Skin-Buckling Mode

Fig. 13. Mesh Configuration and Buckling Modes of Isogrid Panel

ener-buckling modes. As the cross-sectional area increases,
the local skin-buckling mode is observed in the zone of the
intermediate stiffener height. The range of this mode is
getting wider as the cross-sectional area becomes larger.

4. Conclusion

In the present study, an efficient linear buckling analysis
of composite grid-stiffened plates has been performed.
The employed four-noded hybrid element with drilling
degrees of freedom demonstrated its accuracy and the effi-
ciency.

The parametric study of cross-grid-stiffened and isogrid
stiffened plate buckling analysis is performed. The fol-
lowing specific observations are made from this study.

1. There exist three types of buckling modes, that is,
global mode, local skin-buckling mode, and stiffener-
buckling mode.

2. In the practical range of application of stiffener
heights, the global modes and local skin-buckling
mode appear in the cross-grid stiffened plate.
Whereas in the isogrid stiffened plate, all these modes
appear.

3. Mode transition appears as the stiffener height
increase from global-buckling to local skin-buckling
or from local skin-buckling to stiffener-buckling.

4. Maximum buckling load occurs at the local skin-
buckling mode. The range of skin-buckling is getting

(b) Global Buckling Mode

(d) Stiffener-Buckling Mode

wider as the cross-sectional area of the grid-stiffener
become larger.
To understand actual load-carrying capacity of the grid-
stiffened panel, the postbuckling analysis is necessary.
This work is now in progress.
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