• Title/Summary/Keyword: Grid connection

Search Result 307, Processing Time 0.027 seconds

Design of Emotional Learning Controllers for AC Voltage and Circulating Current of Wind-Farm-Side Modular Multilevel Converters

  • Li, Keli;Liao, Yong;Liu, Ren;Zhang, Jimiao
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2294-2305
    • /
    • 2016
  • The introduction of a high-voltage direct-current (HVDC) system based on a modular multilevel converter (MMC) for wind farm integration has stimulated studies on methods to control this type of converter. This research article focuses on the control of the AC voltage and circulating current for a wind-farm-side MMC (WFS-MMC). After theoretical analysis, emotional learning (EL) controllers are proposed for the controls. The EL controllers are derived from the learning mechanisms of the amygdala and orbitofrontal cortex which make the WFS-MMC insensitive to variance in system parameters, power change, and fault in the grid. The d-axis and q-axis currents are respectively considered for the d-axis and q-axis voltage controls to improve the performance of AC voltage control. The practicability of the proposed control is verified under various conditions with a point-to-point MMC-HVDC system. Simulation results show that the proposed method is superior to the traditional proportional-integral controller.

Fault-Tolerant Control of Cascaded H-Bridge Converters Using Double Zero-Sequence Voltage Injection and DC Voltage Optimization

  • Ji, Zhendong;Zhao, Jianfeng;Sun, Yichao;Yao, Xiaojun;Zhu, Zean
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.946-956
    • /
    • 2014
  • Cascaded H-Bridge (CHB) converters can be directly connected to medium-voltage grids without using transformers and they possess the advantages of large capacity and low harmonics. They are significant tools for providing grid connections in large-capacity renewable energy systems. However, the reliability of a grid-connected CHB converter can be seriously influenced by the number of power switching devices that exist in the structure. This paper proposes a fault-tolerant control strategy based on double zero-sequence voltage injection and DC voltage optimization to improve the reliability of star-connected CHB converters after one or more power units have been bypassed. By injecting double zero-sequence voltages into each phase cluster, the DC voltages of the healthy units can be rapidly balanced after the faulty units are bypassed. In addition, optimizing the DC voltage increases the number of faulty units that can be tolerated and improves the reliability of the converter. Simulations and experimental results are shown for a seven-level three-phase CHB converter to validate the efficiency and feasibility of this strategy.

Analysis on the behavior of Stiffened Reinforcement within Reinforced earth retaining wall (보강토 옹벽 축조시 사용되는 보강재의 강성이 시공완료후 보강토 옹벽 구조체의 거동에 미치는 영향)

  • 박병영;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.1-11
    • /
    • 2001
  • This Paper presents the result of a parametric study on the behavior of stiffened grid reinforced segmental wall resting on non-yielding foundation. The parametric study was conducted using the nonlinear finite element analysis. In the finite element analysis, the step by step construction of the wall such as backfill, block reinforcement, block/backfill and soil/reinforcement interfaces were carefully modeled. The mechanical behavior of stiffened grid reinforced segmental walls was then investigated based on the result of analysis with emphasis on the effect of reinforcement stiffness on the behavior of the wall. The results of analysis indicate that the horizontal wall displacement decrease; with increasing the reinforcement stiffness at a decreasing rate, and that the horizontal stress at the back of the reinforced soil block does not much vary with the reinforcement stiffness. It is also revealed that the calculated maximum vertical stress at the base of the reinforced soil block agrees well with that based on the Meyerhof distribution and that the reinforcement and the connection force are considerably smaller than what might be expected based on the current design assumptions. The implications of the findings from this study to current design approaches were discussed in detail.

  • PDF

Improvement in Active Power Control Methods for a Wind Farm Based on Modified Wind Turbine Control in Danish Grid Codes

  • Sim, JunBo;Song, Il-Keun;Lee, Yongseung;Lee, Hak-Ju;Choi, Yun-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1438-1449
    • /
    • 2018
  • The importance of power system stability has been emphasized with an increase of wind energy penetration in the power system. Accordingly, the guarantee on various control capabilities, including active and reactive power control of wind farms, was regarded as the most important aspect for the connection to the grid. To control the wind farm active power, the wind farm controller was introduced. The wind farm controller decides the power set points for each wind turbine generating unit and each wind turbine generating unit controls its power according to the set points from the wind farm controller. Therefore, co-relationship between wind farm controller and wind turbine controllers are significantly important. This paper proposes some control methods of wind farm active power control based on modified wind turbine control for power system stability and structures to connect wind turbine controllers to wind farm controller. Besides, this paper contributes to development of control algorithm considering not only electrical components but also mechanical components. The proposed contributions were verified by full simulation including power electronics and turbulent wind speed. The scenario refers to the active power control regulations of the Eltra and Elkraft system in Denmark.

Development of Power Conditioning System for High Power Fuel Cell System (대용량 연료전지 발전시스템용 전력변환기 개발)

  • Lee, Jin-Hee;Baek, Seung-Taek;Jung, Hong-Ju;Kang, Ho-Hyun;Chung, Joon-Mo;Suh, In-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.530-532
    • /
    • 2007
  • This paper presents the design, development and performance of a power conditioning system (PCS) for application to a 250kW Molten Carbonate Fuel Cell (MCFC) generation system. A DSP controller was used to control the dc-dc and dc-ac converter operation for grid connection and power injection to the grid. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. A control method for parallel operation of dc-dc converters was proposed and verified. A 250kW prototype was successfully built and tested. Experimental performances are compared to minimum target requirements of the PCS for MCFC.

  • PDF

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Application of a C-Type Filter Based LCFL Output Filter to Shunt Active Power Filters

  • Liu, Cong;Dai, Ke;Duan, Kewei;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1058-1069
    • /
    • 2013
  • This paper proposes and designs a new output filter called an LCFL filter for application to three phase three wire shunt active power filters (SAPF). This LCFL filter is derived from a traditional LCL filter by replacing its capacitor with a C-type filter, and then constructing an L-C-type Filter-L (LCFL) topology. The LCFL filter can provide better switching ripple attenuation capability than traditional passive damped LCL filters. The LC branch series resonant frequency of the LCFL filter is set at the switching frequency, which can bypass most of the switching harmonic current generated by a SAPF converter. As a result, the power losses in the damping resistor of the LCFL filter can be reduced when compared to traditional passive damped LCL filters. The principle and parameter design of the LCFL filter are presented in this paper, as well as a comparison to traditional passive damped LCL filters. Simulation and experimental results are presented to validate the theoretical analyses and effectiveness of the LCFL filter.

Strategy for the Seamless Mode Transfer of an Inverter in a Master-Slave Control Independent Microgrid

  • Wang, Yi;Jiang, Hanhong;Xing, Pengxiang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.251-265
    • /
    • 2018
  • To enable a master-slave control independent microgrid system (MSCIMGS) to supply electricity continuously, the microgrid inverter should perform mode transfer between grid-connected and islanding operations. Transient oscillations should be reduced during transfer to effectively conduct a seamless mode transfer. This study uses a typical MSCIMGS as an example and improves the mode transfer strategy in three aspects: (1) adopts a status-tracking algorithm to improve the switching strategy of the outer loop, (2) uses the voltage magnitude and phase pre-synchronization algorithm to reduce transient shock at the time of grid connection, and (3) applies the hybrid-sensitivity $H_{\infty}$ robust controller instead of the current inner loop to improve the robustness of the controller. Simulations and experiments show that the proposed strategy is more practical than the traditional proportional-derivative control mode transfer and effective in reducing voltage and current oscillations during the transfer period.

The 500W DC/DC converter development for thermoelectric application (열전소자 활용을 위한 500W급 DC/DC 컨버터 개발)

  • Kim, Sun-Pil;Kim, Se-Min;Park, In-Sun;Ko, Hyun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.219-226
    • /
    • 2019
  • This paper describes the development of a 500W DC/DC converter for use with a thermoelectric module(TEM). A thermoelectric device is a structure in which a P-type semiconductor and an N-type semiconductor are electrically connected in series and thermally connected in parallel. There is a feature that an electromotive force is generated by making a temperature difference between both surfaces of a thermoelectric element. This feature can be used as a renewable power source without the need for fossil energy. The proposed converter boosts the low generation voltage of the thermoelectric element to secure the voltage for the grid connection. This converter is a combination of a resonant converter for boosting and a boost-converter for output voltage control. This structure has an advantage that a voltage can be stepped up at a high efficiency and precise output voltage control is possible. We carry out simulations and experiments to verify the validity.

A Study on Modeling of Leakage Current in ESS Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 ESS의 누설전류 모델링에 관한 연구)

  • Kim, Ji-Myung;Tae, Dong-Hyun;Lee, Il-Moo;Lim, Geon-Pyo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.810-818
    • /
    • 2021
  • A leakage current of ESS is classified mainly by the occurrence from a PCS(Power Conditioning System) section and an unbalanced grid current. The reason for the leakage current from the PCS section is a voltage change by IGBT (Insulated Gate Bipolar Transistor) switching and stray capacitance between the IGBT and heatsink. The leakage current caused by the grid unbalanced current flows to the ESS through the neutral line of grid-connected transformer for the ESS with a three limb iron type of Yg-wire connection. This paper proposes a mechanism for the occurrence of leakage current caused by stray capacitance, which is calculated using the heatsink formula, from the aspect of the PCS section and grid unbalance current. Based on the proposed mechanisms, this study presents the modeling of the leakage current occurrence using PSCAD/EMTDC S/W and evaluates the characteristics of leakage currents from the PCS section and grid unbalanced current. From the simulation result, the leakage current has a large influence on the battery side by confirming that the leakage current from the PCS is increased from 7[mA] to 34[mA], and the leakage current from an unbalanced load to battery housing is increased from 3.96[mA] to 10.76[mA] according to the resistance of the housings and the magnitude of the ground resistance.