Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.1.251

Strategy for the Seamless Mode Transfer of an Inverter in a Master-Slave Control Independent Microgrid  

Wang, Yi (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering)
Jiang, Hanhong (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering)
Xing, Pengxiang (School of Electrical Engineering, Wuhan University)
Publication Information
Journal of Power Electronics / v.18, no.1, 2018 , pp. 251-265 More about this Journal
Abstract
To enable a master-slave control independent microgrid system (MSCIMGS) to supply electricity continuously, the microgrid inverter should perform mode transfer between grid-connected and islanding operations. Transient oscillations should be reduced during transfer to effectively conduct a seamless mode transfer. This study uses a typical MSCIMGS as an example and improves the mode transfer strategy in three aspects: (1) adopts a status-tracking algorithm to improve the switching strategy of the outer loop, (2) uses the voltage magnitude and phase pre-synchronization algorithm to reduce transient shock at the time of grid connection, and (3) applies the hybrid-sensitivity $H_{\infty}$ robust controller instead of the current inner loop to improve the robustness of the controller. Simulations and experiments show that the proposed strategy is more practical than the traditional proportional-derivative control mode transfer and effective in reducing voltage and current oscillations during the transfer period.
Keywords
$H_{\infty}$ robust controller; Master-slave control microgrid; Pre-synchronization; Seamless mode transfer;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 M. A. Mahmud, M. J. Hossain, H. R. Pota, and A. M. T. Oo "Robust nonlinear distributed controller design for active and reactive power sharing in islanded microgrids," IEEE Trans. Energy Convers., Vol. 29, No. 4, pp. 893-903, Dec. 2014.   DOI
2 S. T. Yang, Q. Lei, F. Z. Peng, and Z. M. Qian, "A robust control scheme for grid-connected voltage source inverters," IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 202-212, Jan. 2011.   DOI
3 X. T. Li, M. J. Chen, H. Shinohara, and T. Yoshihara, "Design of a low-order sensorless controller by robust $H_{\infty}$ control for boost converters," J. Power Electron., Vol. 16, No. 3, pp. 1025-1035, May 2016.   DOI
4 Y.-X. Dai, H. Wang, and G.-Q. Zeng, "Double closed-loop PI control of three-phase inverters by binary-coded extremal optimization," IEEE Access., Vol. 4, pp. 7621-7632, Oct. 2016.   DOI
5 Y. A. R. I. Mohamed and A. A. Radwan, "Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems," IEEE Trans. Smart Grid, Vol. 2, No. 2, pp. 352-362, Jun. 2011.   DOI
6 C. Wang, P. Yang, C. Ye, Y. W. Wang, and Z. R. Xu "Voltage control strategy for three/single phase hybrid multi-microgrid," IEEE Trans. Energy Convers., Vol. 31, No. 4, pp. 1498-1509, Dec. 2016.   DOI
7 M. A. Mahmud, H. R. Pota, M. J. Hossain, and N. K. Roy, "Robust partial feedback linearizing stabilization scheme for three-phase grid-connected photovoltaic systems," IEEE J. Photovolt., Vol. 4, No. 1, pp. 423-431, Jan. 2014.   DOI
8 M. R. Tavana, M.-H. Khooban, and T. Niknam, "Adaptive PI controller to voltage regulation in power systems: STATCOM as a case study," ISA Transactions., Vol. 66, pp. 325-334, Jan. 2017.   DOI
9 F. H. Cai, D. Lu, Q. B. Lin, and W. Wang, “Control strategy design of grid-connected and stand-alone single-phase inverter for distributed generation,” J. Power Electron., Vol. 16, No. 5, pp. 1813-1820, Sep. 2016.   DOI
10 T. Goya, T. Senjyu, E. Omine, A. Yona, N. Urasaki, and T. Funabashi, "Robust observer design for an isolated power system with model uncertainty using $H_{\infty}$norm," J. Power Electron., Vol. 10, No. 5, pp. 498-504, May 2010.   DOI
11 K. Naheem, Y.-S. Choi, F. Mwasilu, H. H. Choi, and J.-W. Jung, “Design and stability analysis of a fuzzy adaptive SMC system for three-phase UPS inverter,” J. Power Electron., Vol. 14, No. 4, pp. 704-711, Jul. 2014.   DOI
12 Y. Chen, J. B. Zhao, K. Q. Qu, and F. Li, “PQ control of micro grid inverters with axial voltage regulators,” J. Power Electron., Vol. 15, No. 6, pp. 1601-1608, Nov. 2015.   DOI
13 J. Xiang, F. F. Ji, H. Nian, J. M. Zhang, and H. Q. Deng, “Seamless transfer of single-phase utility interactive inverters with a synchronized output regulation strategy,” J. Power Electron., Vol. 16, No. 5, pp. 1821- 1832, Sep. 2016.   DOI
14 M. N. Arafat, S. Palle, Y. Sozer, and I. Husain, “Transition control strategy between standalone and grid-connected operations of voltage-source inverters,” IEEE Trans. Ind. Appl., Vol. 48, No. 5, pp. 1516-1525, Sep./Oct. 2012.   DOI
15 J. Kwon, S. Yoon, and S. Choi, "Indirect current control for seamless transfer of three-phase utility interactive inverters," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 773-781, Feb. 2012.   DOI
16 I. J. Balaguer, Q. Lei, S. Yang, U. Supatti, and F. Z. Peng, "Control for grid-connected and intentional islanding operations of distributed power generation," IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 147-157, Jan. 2011.   DOI
17 T.-V. Tran, T.-W. Chun, H.-H. Lee, H.-G. Kim, and E.-C. Nho, "PLL-based seamless transfer control between grid-connected and islanding modes in grid-connected inverters," IEEE Trans. Power Electron, Vol. 29, No.10, pp. 5218-5228, Oct. 2014.   DOI
18 X. T. Xu, H. Q. Wen, L. Jiang, and Y. H. Hu, “Hybrid control and protection scheme for inverter dominated microgrids,” J. Power Electron., Vol. 17, No. 3, pp. 744-755, May 2017.   DOI
19 R. M. S. Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza, "Comparison of three single-phase PLL algorithms for UPS applications," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 2923-2932, Aug. 2008.   DOI
20 O. Husev, A. Chub, E. Romero-Cadaval, C. Roncero- Clemente, and D. Vinnikov, “Voltage distortion approach for output filter design for off-grid and grid-connected pwm inverters,” J. Power Electron., Vol. 15, No. 1, pp. 278-287, Jan. 2015.   DOI
21 T. S. Hwang and S. Y. Park, "A seamless control strategy of a distributed generation inverter for the critical load safety under strict grid disturbances," IEEE Trans. Power Electron., Vol. 28, No. 10, pp. 4780-4790, Oct. 2013.   DOI
22 Z. W. Li, C. Z. Zang, P. Zeng, H. B. Yu, S. Li, and J. Bian, "Control of a grid-forming inverter based on sliding mode and mixed $H_2H_{\infty}$ control," IEEE Trans. Ind. Electron., Vol. 64, No. 5, pp. 3862-3872, May 2017.   DOI
23 M. Dehghani, M. H. Khooban, T. Niknam, and S. M. R. Rafiei, “Time-varying sliding mode control strategy for multibus low-voltage microgrids with parallel connected renewable power sources in islanding mode,” J. Energy Eng., Vol. 142, No. 4, pp. 05016002, Dec. 2016.   DOI
24 O. N. Almasi, V. Fereshtehpoor, M. H. Khooban, and F. Blaabjerg, "Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control," ISA Transactions., Vol. 67, pp. 515-527, Mar. 2017.   DOI
25 M. H. Khooban, T. Niknam, F. Blaabjerg, and T. Dragicevicb, "A new load frequency control strategy for micro-grids with considering electrical vehicles," Electric Power Systems Research., Vol. 143, pp. 585-598, Feb. 2017.   DOI