• Title/Summary/Keyword: Grid alloys

Search Result 12, Processing Time 0.021 seconds

Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface (Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향)

  • Oh, Se-Woong;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.5
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery (Pb-기판의 표면특성에 미치는 합금원소의 영향)

  • Oh, S.W.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.6
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.

Thermal Fatigue Life Prediction of ${\mu}BGA$ Solder Joint Using Sn-37mass%Pb Solder and Sn-3.5mass%Ag Lead-free Solder (Sn-37mass%Pb 솔더 및 Sn-3.5mass%Ag 무연솔더를 이용한 ${\mu}BGA$ 솔더접합부의 열피로수명 예측)

  • 신영의;이준환;하범용;정승부;정재필
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.406-412
    • /
    • 2001
  • This study is focussed on the numerical prediction of the thermal fatigue life of a ${\mu}BGA$(Micro Ball Grid Array) solder joint. Numerical method is used to perform three-dimensional finite element analysis for Sn-37mass%Pb. Sn-3.5mass%Ag solder alloys during the given thermal cycling. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. In this study, a practical correlation for the prediction of the thermal fatigue life is suggested by using the dimensionless variable $\gamma$. As a result. it could be found that Sn-3.5mass%Ag has longer fatigue life than Sn-37mass%Pb in low cycle fatigue. In addition. the result with ${\gamm}ashow$a good agreement with the FEA results.

  • PDF

HIGH BURNUP FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeong, Yong-Hwan;Kim, Keon-Sik;Bang, Je-Geon;Chun, Tae-Hyun;Kim, Hyung-Kyu;Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • High bum-up fuel technology has been developed through a national R&D program, which covers key technology areas such as claddings, $UO_2$ pellets, spacer grids, performance code, and fuel assembly tests. New cladding alloys were developed through alloy designs, tube fabrication, out-of-pile test and in-reactor test. The new Zr-Nb tubes are found to be much better in their corrosion resistance and creep strength than the Zircaloy-4 tube, owing to an optimized composition and heat treatment of the new Zr-Nb alloys. A new fabrication technology for large grain $UO_2$ pellets was developed using various uranium oxide seeds and a micro-doping of Al. The uranium oxide seeds, which were added to $UO_2$ powder, were prepared by oxidizing and heat-treating scrap $UO_2$ pellets. A $UO_2$ pellet containing tungsten channels was fabricated for a thermal conductivity enhancement. For the fuel performance analysis, new high burnup models were developed and implemented in a code. This code was verified by an international database and our own database. The developed spacer grid has two features of contoured contact spring and hybrid mixing vanes. Mechanical and hydraulic tests showed that the spacer grid is superior in its rodsupporting, wear resistance and CHF performance. Finally, fuel assembly test technology was also developed. Facilities for mechanical and thermal hydraulic tests were constructed and are now in operation. Several achievements are to be utilized soon by the Korea Nuclear Fuel and thereby contribute to the economy and safety of PWR fuel in Korea

High Temperature Creep Behavior in Al-Mg(Zn)-Fe Alloys

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • Creep tests were conducted under a condition of constant stress on two aluminum-based alloys containing particles: Al-5% Mg-0.25% Fe and Al-5% Zn-0.22% Fe. The role of grain boundary sliding was examined in the plane of the surface using a square grid printed on the surface by carbon deposition and perpendicular to the surface using two-beam interferometry. Estimates of the contribution of grain boundary sliding to the total strain, $\varepsilon_{gbs}/\varepsilon_t$ reveal two trends; (i) the sliding contribution is consistently higher in the Al-Mg-Fe alloy, and (ii) the sliding contribution is essentially independent of strain in the Al-Mg-Fe alloy, but it shows a significant decrease with increasing strain in the Al-Zn-Fe alloy. Sliding is inhibited by the presence of particles and its contributions to the total strain are low. This inhibition is attributed to the interaction between the grain boundary dislocations responsible for sliding and particles in the boundaries.

A Study on $\mu$BGA Solder Joints Reliability Using Lead-free Solder Materials

  • Shin, Young-Eui;Lee, Jun-Hwan;Kon, Young-Wook;Lee, Chong-Won;Yun, Jun-Ho;Jung, Seug-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • In this study, the numerical prediction of the thermal fatigue lie? of a $\mu$BGA (Micro Ball Grid Array) solder joint was focused. Numerical method was performed using the three-dimensional finite element analysis for various solder alloys such as Sn-37%Pb, Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-3.5%Ag-3%In-0.5%Bi during a given thermal cycling. Strain values obtained by the result of mechanical fatigue tests for solder alloys, were used to predict the solder joint fatigue life using the Coffin-Manson equation. The numerical results showed that Sn-3.5%Ag with the 50-degree ball shape geometry had the longest thermal fatigue life in low cycle fatigue. A practical correlation for the prediction of the thermal fatigue life was also suggested by using the dimensionless variable γ. Additionally Sn-3.5Ag-0.75Cu and Sn-2.0Ag-0.5Cu-2.0Bi were applied to 6$\times$8$\mu$BGA obtained from the 63Sn-37Pb Solder. This 6$\times$8$\mu$BGA were tested at different aging conditions at 130$\^{C}$, 150$\^{C}$, 170$\^{C}$ for 300, 600 and 900 hours. Thickness of the intermetallic compound layer was measured thor each condition and the activation energy thor their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS ( Energy Dispersive Spectroscopy).

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Numerical Simulation of the Aluminum Alloys Solidification in Complex Geometries

  • Monteiro Eliseu;Rouboa Abel
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1773-1780
    • /
    • 2005
  • The process of mould design in the foundry industry has been based on the intuition and experience of foundry engineers and designers. To bring the industry to a more scientific basis the design process should be integrated with scientific analysis such as heat transfer. The production by foundry techniques is influenced by the geometry configuration, which affects the solidification conditions and subsequent cooling. Numerical simulation and/or experiments make possible the selection of adequate materials, reducing cycle times and minimizing production costs. The main propose of this work is to study the heat transfer phenomena in the mould considering the phase change of the cast-part. Due to complex geometry of the mould, a block unstructured grid and a generalized curvilinear formulation engaged with the finite volume method is described and applied. Two types of boundary conditions, diffusive and Newtonian, are used and compared. The developed numerical code is tested in real case and the main results are compared with experimental data. The results showed that the solidification time is about 6 seconds for diffusive boundary conditions and 14.8 seconds for Newtonian boundary conditions. The use of the block unstructured grid in combination with a generalized curvilinear formulation works well with the finite volume method and allows the development of more efficient algorithms with better capacity to describe the part contours through a lesser number of elements.

Characteristic of Intermetallic Compounds for Aging of Lead Free Solders Applied to 48 $\mu$BGA (48 $\mu$BGA에 적용한 무연솔더의 시효처리에 대한 금속간화합물의 특성)

  • Shin, Young-Eui;Lee, Suk;Fujimoto, Kozo;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2001
  • The concerns of the toxicity and health hazard of lead in solders have demanded the research to find suitable lead-free solder alloys. It was discussed that effect of the intermetallic formation and structure on the reliability of solder joints. In this study, lead-free solder alloys with compositions of Sn/3.5Ag/0.75Cu, Sn/2.0Ag/0.5Cu/2.0Bi were applied to the 48 $\mu$BGA packages. Also, the lead-free solder alloys compared with eutectic Sn/37Pb solder using shear test under various aging temperature. Common $\mu$BGA with solder components was aged at $130^{\circ}C$, $150^{\circ}C$ and $170^{\circ}C$. And the each temperature applied to 300, 600 and 900 hours. The thickness of the intermetallics was measured for each condition and the activation energy for their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS (Energy Dispersive Spectroscopy). These results for reliability of lead-free interconnections are discussed.

  • PDF