• 제목/요약/키워드: Grid Turbulence

검색결과 337건 처리시간 0.021초

Circular-to-Rectangular Transition Duct 내부의 3차원 유동장에 관한 연구 (Three-Dimensional Numerical Simulation within a Circular-to-Rectangular Transition Duct)

  • 조수용;정희택;손호재
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.9-16
    • /
    • 1998
  • Predictive behaviors by the extended k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ turbulence model are compared. Grid dependency is tested with the H-type grid as well as the O-type grid. Computations have been performed on a circular-to-rectangular transition duct. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, peripheral wall static pressure distributions and turbulence kinetic energy have been compared with experimental results. The computed results than those obtained with the standard k-${\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid seem to agree well with experimental results.

  • PDF

Circular-to-Rectangular Transition Duct 에서의 3차원 유동장에 관한 연구 (Three-Dimensional Numerical Simulation on a Circular-to-Rectangular Transition Duct)

  • 조수용;손호재
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.55-61
    • /
    • 1998
  • The purpose of this study is to compare the predictive behaviors of the extended $k-{\varepsilon}$ turbulence model and the standard $k-{\varepsilon}$ turbulence model. Grid dependency is tested with the H-type grid and the O-type grid. Computations have been performed for a circular-to-rectangular transition duct. Numerical results for several sections along the streamwise have been obtained to compare with experimental results. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, and peripheral wall static pressure distributions have been compared with experimental results. The computed results obtained with the extended $k-{\varepsilon}$ turbulence model show better agreement with experimental results than those obtained with the standard $k-{\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid agree well with experimental results.

  • PDF

축류 압축기 날개열의 팁 영역에 관한 3차원 수치해석을 통한 난류모형 비교 (Comparison of Turbulence Models through Three Dimensional Numerical Soultion for the Tip Region of an Axial Compressor Cascade)

  • 최일곤;맹주성
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.18-25
    • /
    • 1997
  • A pressure-based Navier-Stokes numerical solver was used to compare solutions of the k-ε/RNG k-ε turbulence models. An efficient grid generation scheme, the transient grid generation with full boundary control, was used to solve the flows in the tip clearance region. Results indicate that the calculations using k-ε model captures various phenomena related to the tip clearance with good accuracy.

  • PDF

Unsteady Conjugate Heat Transfer Analysis of a Cooled Turbine Nozzle with High Free Stream Turbulence

  • Seo, Doyoung;Hwang, Sunwoo;Son, Changmin;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.279-289
    • /
    • 2017
  • In this study, a series of conjugate heat transfer (CHT) analyses are conducted for a stage of a fully cooled high-pressure turbine (HPT) at elevated levels of free stream turbulence (Tu = 5% and 25.7%). The goal of the analyses is to investigate the influence of high turbulence intensity on the fluid-thermal characteristics of a nozzle guide vane (NGV). The turbine inlet temperature is defined by considering a typical radial temperature distribution factor (RTDF). The Unsteady Reynolds Average Navier-Stokes (URANS) CHT simulations are carried out using CFX 15.0, a commercial CFD package. The presented CFD modeling approach for high turbulence intensity is verified with the experimental data from two types of NASA C3X NGVs with films. The computation grid is generated for both the fluid and solid domains. The fluid domain grid is created using a tetrahedral grid system with prism layers because of its complex geometry, and the solid domain grid is composed of only tetrahedral elements. The analytical results are compared to understand the effect of turbulence on flow characteristics and metal temperature distributions. The results obtained in this study provide useful insights on the effects of high free stream turbulence and unsteadiness. The results also lead to the proposal of meaningful turbine design guidelines.

격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향 (Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD)

  • 박동우;윤현식
    • 해양환경안전학회지
    • /
    • 제20권4호
    • /
    • pp.419-425
    • /
    • 2014
  • 본 연구는 격자수, 첫 번째 격자까지의 거리($Y_P+$), 난류모델 그리고 이산화 방법에 따른 해의 변화량을 조사하였다. 대상선박은 KVLCC이며, 격자구성과 유동해석은 상용코드인 Gridgen V15와 FLUENT를 사용하였다. 검토는 2가지 파트로 나누어서 수행하였다. 첫 번째 파트는 격자수, 난류모델 그리고 이산화 방법의 조합에 따른 해의 영향성을 평가하였다. 두 번째 파트는 적합한 $Y_P+$ 선정에 초점을 두었다. 격자수와 이산화 방법이 동일한 경우 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 압력저항은 약 9 %의 큰 차이를 보였다. $Y_P+$와 이산화 방법이 동일한 경우 $Y_P+$를 30과 50으로 설정하였을 때 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 100에서는 약 3 % 차이를 보였다. 반면, 압력저항은 $Y_P+$값에 무관하게 난류모델에 따라 약 10 % 차이를 보였다. 난류모델과 이산화 방법이 동일한 경우 격자 수 변화 따라 마찰저항, 압력저항 그리고 전 저항 모두 큰 차이를 보이지 않았다. 난류모델과 이산화 방법이 동일한 경우 $Y_P+$의 변화에 따라 마찰저항은 5~8 %의 큰 차이를 보였고, 압력저항은 큰 차이를 보이지 않았다.

Numerical investigation of flow characteristics through simple support grids in a 1 × 3 rod bundle

  • Karaman, Umut;Kocar, Cemil;Rau, Adam;Kim, Seungjin
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1905-1915
    • /
    • 2019
  • This paper investigated the influence of simple support girds on flow, irrespective of having mixing vanes, in a 1 × 3 array rod bundle by using CFD methodology and the most accurate turbulence model which could reflect the actual physics of the flow was determined. In this context, a CFD model was created simulating the experimental studies on a single-phase flow [1] and the results were compared with the experimental data. In the first part of the study, influence of mesh was examined. Tetra, hybrid and poly type meshes were analyzed and convergence study was carried out on each in order to determine the most appropriate type and density. k - ε Standard and RSM LPS turbulence models were used in this section. In the second part of the study, the most appropriate turbulence model that could reflect the physics of the actual flow was investigated. RANS based turbulence models were examined using the mesh that was determined in the first part. Velocity and turbulence intensity results obtained on the upstream and downstream of the spacer grid at -3dh, +3dh and +40dh locations were compared with the experimental data. In the last section of the study, the behavior of flow through the spacer grid was examined and its prominent aspects were highlighted on the most appropriate turbulence model determined in the second part. Results of the study revealed the importance of mesh type. Hybrid mesh having the largest number of structured elements performed remarkably better than the other two on results. While comparisons of numerical and experimental results showed an overall agreement within all turbulence models, RSM LPS presented better results than the others. Lastly, physical appearance of the flow through spacer grids revealed that springs has more influence on flow than dimples and induces transient flow behaviors. As a result, flow through a simple support grid was examined and the most appropriate turbulence model reflecting the actual physics of the flow was determined.

적응격자계를 이용한 경계층의 확산제어천이 예측 (Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid)

  • 조지룡
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

NURBS를 이용한 S형 천음속 흡입관 최적 설계 (OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS)

  • 이병준;김종암
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

GCI와 벽면격자거리를 고려한 2차원 분사유동의 검증 (VERIFICATION OF 2D INJECTION FLOWS WITH GCI AND NEAR-WALL GRID LINE SPACINGS)

  • 원수희;정인석;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.287-292
    • /
    • 2005
  • The flowfields generated by gaseous slot injection into a supersonic flow at a Mach number of 3.75 and a Reynolds number of $2.07{\times}10^7$ are simulated numerically. Fine-scale turbulence effects are represented by a two-equation(k-w SST model) closure model which includes $y^+$ effects on the turbulence model. Grid convergence index(GCI) is also considered to provide a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence model in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-w SST model correctly predicts mean surface pressure distribution and upstream separation length. However, it is also observed that the numerical simulation over predicts the pressure spike and penetration height compared with experimental data. All these results are taken within $1\%$ error band of grid convergence.

  • PDF

Comparison of Turbulence Models for the Prediction of Wakes around VLCC Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제5권2호
    • /
    • pp.27-48
    • /
    • 2001
  • Turbulent flow calculations are performed for the two modern practical VLCCs with the sable forebody and the slightly different afterbody, i.e. KVLCC and KVLCC2. Three $\textsc{k}-\varepsilon$ turbulence models are tested to investigate the differences caused by the turbulence models. The calculated results around the two VLCC hull forms using O-O grid topology and profile-fitted surface meshes are compared to the measured data from towing tank experiment. The realizable $\textsc{k}-\varepsilon$model provided realistic wake distribution with hook-like shape, while the standard and RNG-based $\textsc{k}-\varepsilon$models failed. It is very encouraging to see that the CFD with relatively simple turbulence closure can tell the difference quantitatively as well as qualitatively for the two hull forms with stern frameline modification.

  • PDF