• Title/Summary/Keyword: Green function method

Search Result 386, Processing Time 0.026 seconds

Numerical Experiments using Efficient FMM for the EM Scattering by Underground Object (지하물체 탐지를 위한 FMM 기반의 효율적인 수치 해석 연구)

  • Kim, Sung-Hwan;Ahn, Chang-Hoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1790-1795
    • /
    • 2009
  • For GPR(Ground Penetrating Radar) applications, an accurate analysis of the scattered field is necessary to identify the unknown target. Dyadic Green's function of the multilayered medium is developed and applied to analysis of the underground conducting object. We used method of moment(MOM) with dyadic Green's function, and Discrete Complex Image Method(DCIM). To reduce the computational complexity, fast multipole method is introduced and we showed the accuracy of the method comparing with the conventional method of moment. For investigating the underground conducting target, several numerical experiments were accomplished using this method.

On the Removal of Irregular Frequencies in the Prediction of Ship Motion in Waves (파랑중에서 전진동요하는 선박의 특이파수 억제에 관한 연구)

  • H.Y. Lee;D.J. Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.73-81
    • /
    • 1994
  • The source and source/dipole distribution methods using 3-dimensional panel method have been widely used for ship motion analysis. When these methods are used, large errors in the predicted hydrodynamic coefficients are introduced around the irregular frequencies caused by the resonance of imaginary internal flow. Therefore, the irregular frequencies need to be removed for an accurate prediction of ship motion. This paper adopts 3-dimensional translating and oscillating Green function derived by Wu. The adaptive integration method, stretching transform and stationary phase method are used for the calculation of the calculation of Green function and the integral equation is derived by distributing the Green function n ship surface and inner free-surface. The condition of zero normal velocity, that is, wall condition on inner free-surface has been successfully used for the removal of irregular frequencies in oscillating problems. The calculations are carried out for series 60($C_B=0.7$) vessel and the results are compared with those of other theoretical analyses and experiment.

  • PDF

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

An analytical study on unsteady thermal stresses of functionally graded materials (경사기능재료의 비정상 열응력에 관한 해석적 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1441-1451
    • /
    • 1997
  • This paper addresses method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition changes continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

A study on relaxation of thermal stresses of heat-resistant systems (열차단 시스템에 있어서의 열응력 완화에 대한 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 1998
  • This paper addresses a method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition is changed continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

Time-reversal microwave focusing using multistatic data

  • Won-Young Song;Soon-Ik Jeon;Seong-Ho Son;Kwang-Jae Lee
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.333-346
    • /
    • 2024
  • Various techniques for noninvasively focus microwave energy on lesions have been proposed for thermotherapy. To focus the microwave energy on the lesion, a focusing parameter, which is referred to as the magnitude and phase of microwaves radiated from an external array antenna, is very important. Although the finite-difference time-domain (FDTD)-based time-reversal (TR) focusing algorithm is widely used, it has a long processing time if the focusing target position changes or if optimization is needed. We propose a technique to obtain multistatic data (MSD) based on Green's function and use it to derive the focusing parameters. Computer simulations were used to evaluate the electric fields inside the object using the FDTD method and Green's function as well as to compare the focusing parameters using FDTD- and MSD-based TR focusing algorithms. Regardless of the use of Green's function, the processing time of MSD-based TR focusing algorithms reduces to approximately 1/2 or 1/590 compared with the FDTD-based algorithm. In addition, we optimize the focusing parameters to eliminate hotspots, which are unnecessary focusing positions, by adding phase-reversed electric fields and confirm hotspot suppression through simulations.

2 D Computer Simulation of Laser-Generated Ultrasonic Wave (레이저 여기 초음파의 2차원 컴퓨터 시뮬레이션)

  • Kim, Gyeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1847-1853
    • /
    • 2000
  • A computer simulation technique for 2-dimensional laser generated ultrasonic waves was developed for visualization and investigation of ultrasonic propagation in solids. The technique is similar to a finite difference method (FDM) and a mass-particle model method, but uses a new nodal calculation method based on fundamental consideration of an elastic wave equation. By this method, the propagation behavior oflaser generated ultrasonic wave in thermoelastic and ablation mode is visualized and shows good agreement with previous experimental result or the numerical analysis result by Green function.

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

EXISTENCE OF NONNEGATIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • By means of Green function and fixed point theorem related with cone theoretic method we show that there exist multiple nonnegative solutions of a Dirichlet problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\lambda}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x(0)=0=x(T)}$$, and a mixed problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\mu}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x^{\prime}(0)=0=x(T)}$$, where ${\lambda}$ and ${\mu}$ are positive parameters.

  • PDF

Numerical Analysis of Three-Dimensional Wave Transformation of Floating Breakwater Moored by Catenary (Catenary 계류된 부방파제의 3차원 파랑변형에 관한 수치해석)

  • KIM DO-SAM;CHOI NACK-HOON;YOON HEE-MYUN;SON BYOUNG-KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.241-248
    • /
    • 2004
  • In general, the salient features if the floating breakwater have excellent regulation of sea-water keeping the marine a1ways clean, up and dorm free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth, This study discusses the three dimensional wave transformation of the floating breakwater moored by catenary. Numerical method is based at the Green function method and eigenfunction expansion method. The validity of the present is confirmed by comparing it with the result of Ijima et a1.(1975) fer tensile maxed floating breakwater. According to the numerical results, drift and width of the floating breakwater affect at the wave transformation greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater.

  • PDF