• Title/Summary/Keyword: Green House

Search Result 964, Processing Time 0.021 seconds

Effect of Molinate, Simetryn and Imazosulfuron U-Granule Application on Bioefficacy and Phytotoxicity in Rice Paddy (Molinate와 Simetryn 및 Imazosulfuron 수면부상성(水面浮上性) 입제(粒劑)의 시용효과(施用效果))

  • Choi, S.Y.;Chung, B.J.;Chae, J.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 1998
  • This study was carried out to investigate the effect of U-Granule formulation of molinate(S-ethylhexaphdro-1H-azepine-1-carbothioate) mixtures in green house and paddy field, Five minutes were taken for U-Granule to spread out 7m in irrigated water of direct seeded on flooded paddy surface. The concentration of active ingredient of molinate in molinate U-Granule application was similar to molinate+simetryn U-Granule application. But weeding effect of molinate+simetryn U-Granule on Echinochlor crus-galli was 23% higher Than single application of molinate at 7m from application point. Bioefficacy of molinate+simetryn+imazosulfuron U-Granule on control of Echinochloa crus-galli was higher than that of molinzte+imazosulfuton U-Granule, but those effect on Eleochairs kuroguwai was not significantly different. Only slight rice phytotoxicity was observed at 5m and 2m from application point of U-Granule molinate+simetryn+imazosulfuron and molinate+imazosulfuron, respectively. So it is concluded that there is little phytotoxicity problem in practical application of U-Granule of molinate mixtures.

  • PDF

Characteristics of Volatile Organic Compounds and Aldehydes Emission from Yellow poplar (Liriodendron tulipifera L.) (백합나무 판재의 VOCs 및 Aldehydes 방출특성)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.357-366
    • /
    • 2014
  • Based on fundamental properties and machining characteristics of Yellow poplar (Liriodendron tulipifera L.), it has well performance on machinability or workability, drying, and fine surface. Additionally, yellow poplar is light weight and has bright color with high performance of bending processing, so it could be used for furniture or artworks materials and wood-based panel materials. Recently, public attention has been focused on indoor air quality, and Ministry of environment drift more tight regulation on indoor air quality for an apartment house and public facility with the times. Construction materials has been assessed emission of volatile organic compounds (VOCs) and formaldehyde according to law (No.10789), so yellow poplar is also needed to assess these emission characteristics. Emission of VOC and aldehyde compounds from dry and green wood condition of yellow poplar were investigated with KS M 1998:2009. Based on results, more than 30 compounds were detected from yellow poplar, and lower NVOC (natural VOC) were emitted than AVOC (Anthropogenic VOC) and OVOC (other VOC). Formaldehyde emission was lower than $5{\mu}g/m^3$ and acetaldehyde, ketone, and propionaldehyde were detected from yellow poplar. From dry yellow poplar, m-Tolualdehyde ($33.6{\mu}g/m^3$) was additionally detected while no detection of propionaldehyde. After drying process, amount of ketone emission increased significantly. The unique smell of yellow poplar may not only come from emission of acetaldehyde and propionaldehyde.

Optimization of the Inoculation Dose of Plant-Growth Promoting Bacteria Azospirillum brasilense Strain CW903 Assessed by Tomato, Red Pepper and Rice under Greenhouse Condition (온실조건에서 토마토, 고추, 벼를 이용한 식물생장촉진 미생물 Azospirillum brasilense CW903 접종의 최적 조건 평가)

  • Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Yim, Woo-Jong;Kim, Kyoung-A;Kang, Bo-Goo;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.249-254
    • /
    • 2007
  • Inoculation dose of agriculturally important microbes is an important criterion that decides the establishment and hence their effects on plant growth. Effects of the inoculation dose of Azospirillum brasilense strain CW903 on the growth and nutrient absorption of three different crops, tomato, rice and red pepper were assessed under green house condition. Three different concentrations of A. brasilense strain CW903 ($10^5$, $10^6$ and $10^8cfu\;mL^{-1}$) were applied through seed treatment and through the soil near the root zone (1 mL per plant) at 20 and 30 days after sowing. Positive effects on the growth of tomato, rice and red pepper were found at $10^6$ and $10^8cfu\;mL^{-1}$ inoculation doses of A. brasilense strain CW903. The inoculation dose of $10^8cfu\;mL^{-1}$ of A. brasilense strain CW903 recorded the best effects on growth parameters like shoot and root length and the absorption of important nutrients.

Field Performance and Morphological Characterization of Transgenic Codonopsis lanceolata Expressing $\gamma-TMT$ Gene.

  • Ghimire, Bimal Kumar;Li, Cheng Hao;Kil, Hyun-Young;Kim, Na-Young;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Chung, Ill-Min;Lee, Sun-Joo;Eom, Seok-Hyun;Cho, Dong-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.339-345
    • /
    • 2007
  • Field performance and morphological characterization was conducted on seven transgenic lines of Codonopsis lanceolata expressing ${\gamma}-TMT$ gene. The shoots were obtained from leaf explants after co-cultivation with Agrobacterium tume-faciens strain LBA 4404 harboring a binary vector pYBI 121 that carried genes encoding ${\gamma}-Tocopherol$ methyltransferase gene (${\gamma}-TMT$) and a neomycin phosphotransferase II gene (npt II) for kanamycin resistance. The transgenic plants were transferred to a green house for acclimation. Integration of T-DNA into the $T_0\;and\;T_1$ generation of transgenic Codonopsis lanceolata genome was confirmed by the polymerase chain reaction and southern blot analysis. The progenies of transgenic plants showed phenotypic differences within the different lines and with relative to control plants. When grown in field, the transgenic plants in general exhibited increased fertility, significant improvement in the shoot weight, root weight, shoot height and rachis length with relation to the control plants. However, all seven independently derived transgenic lines produced normal flower with respect to its shape, size, color and seeds number at its maturity. Indicating that the addition of a selectable marker gene in the plant genome does not effect on seed germination and agronomic performance of transgenic Codonopsis lanceolata. $T_1$ progenies of these plants were obtained and evaluated together with control plant in a field experiment. Overall, the agronomic performance of $T_1$ progenies of transgenic Codonopsis lanceolata showed superior to that of the seed derived non-transgenic plant. In this study, we report on the morphological variation and agronomic performance of transgenic Codonopsis lanceolata developed by Agrobacterium transformation.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Prediction Model for Gas-Energy Consumption using Ontology-based Breakdown Structure of Multi-Family Housing Complex (온톨로지 기반 공동주택 분류체계를 활용한 가스에너지 사용량 예측 모델)

  • Hong, Tae-Hoon;Park, Sung-Ki;Koo, Choong-Wan;Kim, Hyun-Joong;Kim, Chun-Hag
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.110-119
    • /
    • 2011
  • Global warming caused by excessive greenhouse gas emission is causing climate change all over the world. In Korea, greenhouse gas emission from residential buildings accounts for about 10% of gross domestic emission. Also, the number of deteriorated multi-family housing complexes is increasing. Therefore, the goal of this research is to establish the bases to manage energy consumption continuously and methodically during MR&R period of multi-family housings. The research process and methodologies are as follows. First, research team collected the data on project characteristics and energy consumption of multi-family housing complexes in Seoul. Second, an ontology-based breakdown structure was established with some primary characteristics affecting the energy consumption, which were selected by statistical analysis. Finally, a predictive model of energy consumption was developed based on the ontology-based breakdown structure, with application of CBR, ANN, MRA and GA. In this research, PASW (Predictive Analytics SoftWare) Statistics 18, Microsoft EXCEL, Protege 4.1 were utilized for data analysis and prediction. In future research, the model will be more continuous and methodical by developing the web-base system. And it has facility manager of government or local government, or multi-family housing complex make a decision with definite references regarding moderate energy consumption.

Study on Geostatistical Method for an Effectiveness Analysis on Carbon Reduction Policy - Focusing on the Carbon Point System (탄소저감정책 효과분석을 위한 공간통계기법 적용방안 연구 - 탄소포인트제도를 대상으로 -)

  • Hwang, Hae-Seong;Joo, Yong-Jin;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Carbon Point system is Climate Change Action Program by providing incentives in proportion to voluntary reduction of energy consumption such as electricity, gas and water for houses, commercial facilities. So far, existing researches have been limited to construction of GHG(Green House Gas) Inventory and have little attention to empirical impact analysis on carbon reduction policy regarding the residential section. Therefore, this paper is intended to provide convincing findings of impact analysis on carbon reduction, revolving around the carbon point system. For this, we firstly calculated the carbon emission by using electricity and gas usage data in household targeting to Seongbuk-Gu. Carrying out IPA and spatio-temporal analysis. Then, we are capable of visualizing spatial patterns from 2007 to 2009 as a macro analysis. Following that, we explored the effect on carbon point system through Ex ante-Ex post Analysis by paired t-test. To conclude, we can spatially identify the distribution with a significant difference between carbon emissions according to energy use as a micro analysis by Hot Spot to Analysis on point entities. It is to be hoped that this method will be utilized to establish various policies and to evaluate the effect of reduction of GHG.

Effect of fuel component on nitrous oxide emission characteristics in diesel engine (디젤엔진에 있어서 연료의 성분이 아산화질소 배출에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1045-1050
    • /
    • 2014
  • $N_2O$(Nitrous Oxide) is known as the third major GHG(Green House Gas) following $CO_2$(Carbon Oxide) and $CH_4$(Methane). The GWP(Global Warming Potential) factor of $N_2O$ is 310 times as large as that of $CO_2$ because $N_2O$ in the atmosphere is very stable, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. Investigation on the cause of the $N_2O$ formation have been continuously reported by several researchers on power sources with continuous combustion form, such as a boiler. However, in the diesel engine, research on $N_2O$ generation which has effected from fuel components has not been conducted. Therefore, in this research, author has investigated about $N_2O$ emission rates which was changed by nitrogen and sulfur concentration in fuel on the diesel engine. The test engine was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of that was set up at a 75% load. Nitrogen and sulfur concentrations in fuel were raised by using six additives : nitrogen additives were Pyridine, Indole, Quinoline, Pyrrol and Propionitrile and sulfur additive was Di-tert-butyl-disulfide. In conclusion, diesel fuels containing nitrogen elements less than 0.5% did not affect $N_2O$ emissions in the all concentrations and kinds of the additive agent in the fuel. However, increasing of the sulfur additive in fuel increased $N_2O$ emission in exhaust gas.

Investigation of Proper Spring Harvesting Methods on the Summer Planted Asparagus (Asparagus officinalis L.) in Jeju (제주에서 여름정식한 아스파라거스의 이듬해 적정 수확방법 구명)

  • Seong, Ki-Cheol;Kim, Chun-Hwan;Lee, Jin-Su;Moon, Doo-Kyong;Kang, Kyeong-Hee;Eum, Young-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.280-284
    • /
    • 2009
  • One of the big obstacles to cultivate asparagus was long days taking before first harvesting. This study was carried out to hasten the first harvesting of summer planted asparagus in Jeju. Seedlings were raised for three months and planted June 20th in green house. Harvesting of Spring were separated into non-harvested (control) and harvested (partly-harvesting, completely-harvesting). The first year we could harvest $399kg{\sim}400kg/10a$ in harvesting treatment. Second year's yield was 834kg/10a in partly-harvesting, 825kg/10a in completely-harvesting treatment and 908kg/10a in control. There is no significant difference in second years yield regardless of first year's harvesting methods. The accumulated total yield was increased by 35% (l,229kg/10a) in harvesting treatment from the first spring compared with the control. Marketable yield was increased by 33% (1,116kg/10a) compared with non harvesting in first year (839kg/10a). The result of this study shows that doing harvest of the first year's spring in summer planting asparagus would be desirable for yield and possible to harvest after 8 months planting.

Control of Spinach Downy Mildew by Forced Ventilation in Greenhouse Cultivation (강제환기처리에 의한 비닐하우스재배 시금치의 노균병 발생 억제)

  • Park, Seok-Hee;Lee, Joong-Hwan;Woo, Jin-Ha;Choi, Seong-Yong;Park, So-Deuk;Moon, Yong-Sun
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • Spinach downy mildew caused by Peronospora spinaciae is the main reason of yield reduction in Korea as well as in worldwide. After forced ventilation or horizontal air circulation fans were installed to control growth conditions in green house, the changes of temperature, relative humidity (RH), growth and yield, and occurrence of downy mildew were examined. Althought here was no significant difference of temperature between the treatments, RH as 9.2% lower at nighttime by forced ventilation. In addition, final fresh weight was increased to 17.8g compared to control (10.1g), which as 7.7g enhancement. Downy mildew s tarted to show 20 days after sowing (DAS) and increased to 34.7% at 60 DAS on harvest time in control. In contrast downy mildew was occurred 40 DAS with 0.7% incidence rate and 4% at harvest by forced ventilation. The results indicated that reduction of only 9.2% of RH at nighttime by forced ventilation in greenhouse spinach growth was dramatically thrived over 76.2%. Additionally spinach downy mildew occurred 20 days later with extremely lower incident rate, which meant 88.5% reduction of downy mildew.