Optimization of the Inoculation Dose of Plant-Growth Promoting Bacteria Azospirillum brasilense Strain CW903 Assessed by Tomato, Red Pepper and Rice under Greenhouse Condition

온실조건에서 토마토, 고추, 벼를 이용한 식물생장촉진 미생물 Azospirillum brasilense CW903 접종의 최적 조건 평가

  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Poonguzhali, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Kyoung-A (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kang, Bo-Goo (Protected Agricultural Experiment Institute, CBARES) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2007.04.25
  • Accepted : 2007.06.05
  • Published : 2007.08.28

Abstract

Inoculation dose of agriculturally important microbes is an important criterion that decides the establishment and hence their effects on plant growth. Effects of the inoculation dose of Azospirillum brasilense strain CW903 on the growth and nutrient absorption of three different crops, tomato, rice and red pepper were assessed under green house condition. Three different concentrations of A. brasilense strain CW903 ($10^5$, $10^6$ and $10^8cfu\;mL^{-1}$) were applied through seed treatment and through the soil near the root zone (1 mL per plant) at 20 and 30 days after sowing. Positive effects on the growth of tomato, rice and red pepper were found at $10^6$ and $10^8cfu\;mL^{-1}$ inoculation doses of A. brasilense strain CW903. The inoculation dose of $10^8cfu\;mL^{-1}$ of A. brasilense strain CW903 recorded the best effects on growth parameters like shoot and root length and the absorption of important nutrients.

식물생장촉진 미생물을 농업적으로 활용하는데 있어서 미생물의 접종 수준이 근권에서의 원활한 정착과 식물의 생장촉진 효과를 결정하는데 중요한 기준이 된다. Azospirillum brasilense CW903균주 $10^5$, $10^6$$10^8cfu\;mL^{-1}$ 현택액에 토마토, 벼, 고추의 종자를 침지시킨 후 포트에 파종하여 온실에서 재배하였으며 파종 후 20일과 30일에 1 mL씩 근권토양에 접종하여 각 식물의 생장과 양분흡수를 조사하였다. Azospirillum brasilense CW903 균주 $10^6$$10^8cfu\;mL^{-1}$ 현택액을 처리하였을 때 식물생장 촉진효과가 나타났으며, $10^8cfu\;mL^{-1}$ 현택액을 처리하였을 각 식물의 줄기와 뿌리의 생장 및 양분흡수가 가장 우수한 것으로 나타났다.

Keywords

References

  1. Bai, Y., B. Pan, T.C. Charles, and D.L. Smith. 2002. Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Mea] grown in soilless media. Soil Biol. Biochem. 34:1953-1957 https://doi.org/10.1016/S0038-0717(02)00173-6
  2. Baldani, V.L.D., and J. Dobereiner, 1980. Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol. Biochem. 12:433-439 https://doi.org/10.1016/0038-0717(80)90021-8
  3. Barassi, C.A., G. Ayrault, C.M. Creus, R.J. Sueldo, and M.T. Sobrero. 2006. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci. Hortic. 109:8-14 https://doi.org/10.1016/j.scienta.2006.02.025
  4. Bashan, Y., and Levanony, H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J Microbiol. 36:591-608 https://doi.org/10.1139/m90-105
  5. Bashan, Y., G. Holguin, and L.E. de-Bashan. 2004. Azospirillumplant relationships: physiological, molecular, agricultural, and environmental advances (1997 2003). Can. J. Microbiol. 50:521 577 https://doi.org/10.1139/w04-035
  6. Benizri, E., E. Baudoin, and A. Guckert. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci. Technol. 11:557-574 https://doi.org/10.1080/09583150120076120
  7. Gadagi, R.S., P.D. Krishnaraj, J.H. Kulkami, and T.M. Sa. 2004. The effect of combined Azospirillum inoculation and nitrogen fertilizer on plant growth promotion and yield response of the blanket flower Gaillardia pulchella. Sci. Hortic. 100:323-332 https://doi.org/10.1016/j.scienta.2003.10.002
  8. Harari, A., J. Kigel, and Y. Okon. 1988. Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil 110:275-282 https://doi.org/10.1007/BF02226808
  9. Jackson, M.L. 1973. Soil Chemical Analysis. Prentice-Hall of India Pvt. Ltd. New Delhi, India. pp. 54-56
  10. James, E.X. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 65:197-209 https://doi.org/10.1016/S0378-4290(99)00087-8
  11. Kim, C.W., M.L. Kecskeys, R.J. Deaker, K. Gilchrist, P.B. New, I.R. Kennedy, S.W. Kim, and T.M. Sa. 2005. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can. J. Microbiol. 51:948-956 https://doi.org/10.1139/w05-052
  12. Larcher, M., B. Muller, S. Mantelin, S. Rapior, and J.C. CleyetMarel. 2003. Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol. 160:119-125 https://doi.org/10.1046/j.1469-8137.2003.00862.x
  13. SAS Institute Inc. (2004) SAS user's guide, version 9.1, SAS Institute Inc., Cary, North Carolina, USA
  14. Zheng, Y., and W. He. 1994. Effects of plant growth promoting bacterium Zhengchanjun on forage production. Grasslands China 4:36-38