DOI QR코드

DOI QR Code

Effect of fuel component on nitrous oxide emission characteristics in diesel engine

디젤엔진에 있어서 연료의 성분이 아산화질소 배출에 미치는 영향

  • Yoo, Dong-Hoon (Environment/Power and Energy Department, National Maritime Research Institute)
  • Received : 2014.08.28
  • Accepted : 2014.11.04
  • Published : 2014.11.30

Abstract

$N_2O$(Nitrous Oxide) is known as the third major GHG(Green House Gas) following $CO_2$(Carbon Oxide) and $CH_4$(Methane). The GWP(Global Warming Potential) factor of $N_2O$ is 310 times as large as that of $CO_2$ because $N_2O$ in the atmosphere is very stable, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. Investigation on the cause of the $N_2O$ formation have been continuously reported by several researchers on power sources with continuous combustion form, such as a boiler. However, in the diesel engine, research on $N_2O$ generation which has effected from fuel components has not been conducted. Therefore, in this research, author has investigated about $N_2O$ emission rates which was changed by nitrogen and sulfur concentration in fuel on the diesel engine. The test engine was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of that was set up at a 75% load. Nitrogen and sulfur concentrations in fuel were raised by using six additives : nitrogen additives were Pyridine, Indole, Quinoline, Pyrrol and Propionitrile and sulfur additive was Di-tert-butyl-disulfide. In conclusion, diesel fuels containing nitrogen elements less than 0.5% did not affect $N_2O$ emissions in the all concentrations and kinds of the additive agent in the fuel. However, increasing of the sulfur additive in fuel increased $N_2O$ emission in exhaust gas.

아산화질소($N_2O$, Nitrous Oxide)는 이산화탄소($CO_2$, Carbon Oxide), 메탄($CH_4$, Metane)이어 세 번째로 지구온난화에 기여하는 물질로 알려져 있다. $N_2O$의 지구온난화 계수는 대기 중에서 안정하고, 성층권에서 광분해 된 후 이차적인 오염의 원인이 되기 때문에 $CO_2$의 310배에 이른다. $N_2O$의 생성에 대한 조사는 보일러와 같은 연속적인 연소를 갖는 동력원에 대하여 몇몇의 연구자들에 의한 보고가 있었다. 하지만, 디젤엔진에 있어서 연료의 성분이 $N_2O$ 배출에 미치는 영향에 대한 조사는 실시되어지지 않은 상태이다. 그러므로 본 연구에서는 디젤엔진에서 연료 중에 질소와 황 농도에 의해 변화되는 $N_2O$ 배출율에 대하여 조사하였다. 실험에 사용한 엔진은 12kW/2400rpm의 4행정 직접분사식 디젤엔진이고, 실험엔진의 운전조건은 75% 부하에서 이루어졌다. 연료 중의 질소와 황 농도는 Pyridine, Indole, Quinoline, Pyrrol, Propionitrile, Di-tert-butyl-disulfide의 6 종류 첨가제를 사용하여 증가시켰다. 결과에 의하면, 질소성분 0.3% 이하를 갖는 디젤연료는 첨가제의 종류와 농도와 관계없이 $N_2O$ 배출률에 영향을 미치지 않았다. 하지만, 연료 중 황 첨가제의 증가는 배기가스 중의 $N_2O$ 농도를 증가시켰다.

Keywords

References

  1. J. K. Lim, S. Y. Choi, and S. G. Cho, "Effects of biodiesel fuel on exhaust emission characteristics in diesel engine," Journal of Korean Society of Marine Engineering, vol. 32, no. 1, pp. 27-32, 2008 (in Korean). https://doi.org/10.5916/jkosme.2008.32.1.27
  2. J. K. Lim, S. G. Cho, S. J. Hwang, and D. H. Yoo, "Effect on characteristics of exhaust emissions by using emulsified fuel in diesel engine," Journal of Korean Society of Marine Engineering, vol. 31, no. 1, pp. 44-50, 2007 (in Korean). https://doi.org/10.5916/jkosme.2007.31.1.44
  3. IPCC, Climate Change 2007 Synthesis Report, pp. 1-52, 2007.
  4. A. F. Bouwman, J. A. Taylor, and C. Kroeze, "Testing hypotheses on global emissions of nitrous oxide using atmospheric models," Chemosphere - Global Change Science, vol. 2, pp. 475-492, 2000. https://doi.org/10.1016/S1465-9972(00)00027-1
  5. M. Prather, R. Derwent D. Ehhalt, P. Fraser, E. Sanhueza, and X. Zhou, Radiative Forcing of Climate Change: Other Trace Gases and Atmospheric Chemistry, Cambridge University Press, Cambridge, U.K., 1996.
  6. J. C. Kramlich, J. A Cole, J. M McCarthy, and W. S. Lanier, "Mechanisms of nitrous oxide formation in coal flames," Combustion and Flame, vol. 77, no. 3-4, pp. 375-384, 1989. https://doi.org/10.1016/0010-2180(89)90142-9
  7. H. Molinari, L. Ragona, L. arani, G. Musco, R. Consonni, L. Zetta, H. L. Monaco, J. P. Hamalainen, and M. J. Aho, "Conversion of fuel nitrogen through HCN and $NH_3$ to nitrogen oxides at elevated pressure," Journal of Fuel, vol. 75, pp. 1377-1386, 1996. https://doi.org/10.1016/0016-2361(96)00100-7
  8. K. Koji, K. Kazuhiro, N. Ichiro, O. Kazutomo, and K. Goizumi, "Study of $N_2O$ formation characteristics in char combustion," The Society of Chemical Engineers, vol. 20, no. 4, pp. 482-488, 1994 (in Japanese).
  9. A. Ots, "Formation and emission of compounds affecting environment," Journal of Oil Shale, vol. 22, no. 4, pp. 499-535, 2005.
  10. P. Glarborg, J. E. Johnsson, and D. J. Kim, "Kinetic of homogeneous nitrous oxide decomposition," Journal of Combustion and Flame, vol 99, 1994.
  11. H. Chang, B. Li, W. Li, and H. Chen, "The influence of mineral matters in coal on NO-char reaction in the presence of $SO_2$," Journal of Fuel, vol. 83, Issue 6, pp. 679-683, 2004. https://doi.org/10.1016/j.fuel.2003.08.018
  12. G. W. Mushrusha, E. J. Beala, D. R. Hardya, and J. M. Hughesc, "Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale, and tar sand sources," Fuel Processing Technology, Vol. 61, Issue 3, pp. 197-210, 1999. https://doi.org/10.1016/S0378-3820(99)00056-9
  13. IMO, "NOx Technical Code," 2008.
  14. Japan Standard Association, "Reciprocating internal combustion engines - Exhaust emission measurement," pp. 1-111, 2009.
  15. S. H. An, "Emissions of marine heavy fuel oil in the spray flame," Journal of the Korean Society of Marine Engineering, vol. 32, no. 7, pp. 1030-1035, 2008 (in Korean). https://doi.org/10.5916/jkosme.2008.32.7.1030
  16. S. H. An, "An experimental study of $N_2O$ concentration profiles in planner premixed flame," Journal of the Korean Society of Marine Engineering, vol. 33, no. 2, pp. 267-271, 2009. https://doi.org/10.5916/jkosme.2009.33.2.267

Cited by

  1. Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine vol.19, pp.2, 2015, https://doi.org/10.9726/kspse.2015.19.2.064
  2. Reduction of Nitrous Oxide Emission by EGR Method on Diesel Engine vol.19, pp.3, 2015, https://doi.org/10.9726/kspse.2015.19.3.016
  3. 직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구 vol.21, pp.2, 2014, https://doi.org/10.7837/kosomes.2015.21.2.188
  4. 고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구 vol.25, pp.3, 2014, https://doi.org/10.15435/jilasskr.2020.25.3.132