• Title/Summary/Keyword: Green Energy Technology

Search Result 1,169, Processing Time 0.029 seconds

Mechanical and Oven-drying Characteristics of Pinus densiflora Wood Damaged by Forest Fire (산불 피해 소나무재의 역학적 특성 및 급속오븐 건조특성)

  • Hwang, Won-Joung;Kwon, Gu-Joong;Park, Jong-Su;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.57-62
    • /
    • 2003
  • The Mechanical and drying characteristics of Pinus densiflora wood, which was damaged by forest fire, and sound wood were examined. There were no significant differences in axial compressive properties, shearing strength and impact bending absorbed energy between damaged and sound woods. But the bending properties of damaged wood were slightly higher than those of sound wood. The green moisture content of sapwood in damaged wood was lower than that in sound wood, but oven-drying rate was similar in both woods. Number of initial check in damaged wood was smaller than that in sound wood, and inner check in damaged and sound woods was not observed. Consequently, it is considered that mostly damaged wood by forest fire can be used for wood material after removing the bark.

A Study on the Safety of Hydrogen Embrittlement of Materials Used for Hydrogen Electric Vehicles (수소전기차 사용소재의 수소취성 안전성에 관한 고찰)

  • HYEONJIN JEON;WONJONG JEONG;SUNGGOO CHO;HOSIK LEE;HYUNWOO LEE;SEONGWOO CHO;ILHO KANG;NAMYONG KIM;HO JIN RYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.761-768
    • /
    • 2022
  • In the hope of realizing carbon neutrality, Korea has established the goal of expanding the supply of hydrogen electric vehicles through a roadmap to revitalize the hydrogen economy. A prerequisite for successful supply expansion is securing the safety of hydrogen electric vehicles. Certain parts, such as the hydrogen transport pipe and tank, in hydrogen electric vehicles are exposed to high-pressure hydrogen gas over long periods of time, so the hydrogen enters the grain boundary of material, resulting in a degradation of the parts referred to as hydrogen embrittlement. In addition, since the safety of parts utilizing hydrogen varies depending on the type of material used and its environmental characteristics, the necessity for the enactment of a hydrogen embrittlement regulation has emerged and is still being discussed as a Global Technical Regulation (GTR). In this paper, we analyze a hydrogen compatibility material evaluation method discussed in GTR and present a direction for the development of Korean-type hydrogen compatibility material evaluation methods.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

DANCE : Small AP On/Off Algorithms in Ultra Dense Wireless Network (DANCE : 초고밀도 통신망에서의 소형기지국 온-오프 알고리즘)

  • Lee, Gilsoo;Kim, Hongseok;Kim, Young-Tae;Kim, Byoung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1135-1144
    • /
    • 2013
  • Deploying small cells is a reliable and influential solution to handle the skyrocketing traffic increase in the cellular network, and the small cell technology is evolving to ultra-dense network (UDN). In this paper we propose a small cell on/off algorithm with a simple but essential framework composed of access point (AP), user equipment (UE), and small cell controller (SCC). We propose Device-Assisted Networking for Cellular grEening (DANCE) algorithms that save the energy consumption by tying to minimize the number of turned-on APs while maintaining the network throughput. In doing so, SCC firstly gathers the feedback messages from UEs and then makes a decision including a set of turned-on APs and user association. DANCE algorithm has several variations depending on the number of bits of the UE's feedback message (1 bit vs. N bit), and is divided into AP-first, UE-first, or Proximity ON according to the criteria of selecting the turned-on APs. We perform extensive simulations under the realistic UDN environment, and the results confirm that the proposed algorithms, compared to the baseline, can significantly enhance the energy efficiency, e.g., more than a factor of 10.

The Properties of Concrete with Lightweight Aggregate Impregnated by Phase Change Material (상변화물질 함침 경량골재를 사용한 콘크리트의 특성)

  • Kim, Se-Hwan;Jeon, Hyun-Kyu;Hwang, In-Dong;Seo, Chee-Ho;Kim, Sang-Heon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.331-338
    • /
    • 2013
  • Under the paradigm of sustainable green growth at the national level, various researches and applications for energy saving in the construction field has been attempted. As a part of energy saving efforts, lightweight concrete was investigated for thermal insulation concrete with phase change material (PCM) which has high heat storage capacity. As a part of energy saving efforts, thermal insulation concrete was investigated and evaluated with lightweight aggregate impregnated by PCM which has high heat storage capacity. As a result, it is found that concrete with lightweight aggregate impregnated by PCM is effective to prevent its quality deterioration by reducing water absorption rate of lightweight aggregate. In addition, it has shown that concretes using lightweight aggregate and impregnated lightweight aggregate improve heat insulation property 33% and 40~43% compared with using normal aggregate, respectively. It is that the lightweight aggregate concrete with impregnated lightweight aggregate has 12~14% lower thermal conductivity than unimpregnated.

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2

  • Sinan, Neriman;Unur, Ece
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 2020
  • Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability

Solution-processible Inorganic-organic Hybrid Bipolar Field Effect Transistors

  • Chae, Gil Jo;Walker, Bright;Kim, Kang Dae;Cho, Shinuk;Seo, Jung Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.391.2-391.2
    • /
    • 2014
  • Solution-processible hybrid bipolar field effect transistors (HBFETs) with balanced hole and electron mobilities were fabricated using a combination of the organic p-type poly (3-hexylthiophene) (P3HT) layer and inorganic n-type ZnO material. The hole and electron mobilities were first optimized in single layer devices by using acetonitrile as a solvent additive to process the P3HT and annealing to process the ZnO layer. The highest hole mobility of the P3HT-only-devices with 5% acetonitrile was 0.15 cm2V-1s-1, while the largest electron mobility was observed in the ZnO-only-devices annealed at $200^{\circ}C$ and found to be $7.2{\times}10-2cm2V-1s-1$. The inorganic-organic HBFETs consisting of P3HT with 5% acetonitrile and ZnO layer annealed at $200^{\circ}C$ exhibited balanced hole and electron mobilities of $4.0{\times}10-2$ and $3.9{\times}10-2cm2V-1s-1$, respectively. The effect on surface morphology and crystallinity by adding acetonitrile and thermal annealing were investigated through X-ray diffraction and atomic force microscopy (AFM). Our findings indicate that techniques demonstrated herein are of great utility in improving the performance of inorganic-organic hybrid devices

  • PDF

The Program Development for Environmental Quality Level and Evaluation of Carbon Dioxide Emission in Construction Works (건설사업의 환경성 및 CO2 배출 평가 프로그램 개발)

  • Lee, Kyoung Hee;Kim, Hyo-Jin;Kwon, Suk-Hyun;Kim, Min-Ji
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • One-third of total energy and 50% of $CO_2$ emissions arise from construction phase. Because of this global amount of energy consumption and $CO_2$ emission, we must do our best to solve this problem. But our existing ways of meeting this problem has focused on the energy consumption saving of the construction and dwelling stage. On the other hand, we has been treated too lightly for handling the $CO_2$ emissions problem during the maintenance management and the demolition process so far,. In this paper, we quantitatively predicted and evaluated the environmental load in each construction step during all life cycle. And, we developed the environmental load assessment program for each construction step. And we proposed the reliable decision support model for objective and reliable environmental load assessment and reduction. This result must help the development of construction technology and low carbon & green growth.

Adsorption and Storage of Natural Gas by Nanoporous Adsorbents (나노세공체 흡착제에 의한 천연가스의 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.117-125
    • /
    • 2009
  • In order to utilize natural gas (NG), one of the clean energy sources in next-generation, as a fuel for vehicles, it is important to store natural gas with high density. To store NG by adsorption (ANG) at room temperature and at relatively low pressure(35~40 atm) is safe and economical compared with compressed NG and liquefied NG. However, so far no adsorbent is reported to have adsorption capacity suitable for commercial applications. Nanoporous materials including metal-organic frameworks can be potential adsorbents for ANG. In this review, physicochemical properties of adsorbents necessary for high adsorption capacity are summarized. Wide surface area, large micropore volume, suitable pore size and high density are necessary for high energy density. Moreover, low adsorption-desorption energy, rapid adsorption-desorption kinetics and high delivery are needed. Recently, various efforts have been reported to utilize nanoporous materials in ANG, and it is expected to develop a nanoporous material suitable for ANG.

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells (고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구)

  • Kim, Hyunho;Ji, Kwang-Sun;Bae, Soohyun;Lee, Kyung Dong;Kim, Seongtak;Park, Hyomin;Lee, Heon-Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).