• Title/Summary/Keyword: Green Energy Technology

Search Result 1,178, Processing Time 0.03 seconds

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Comparison of Performance Analysis of the Ventilated and Non-­ventilated CIGS BIPV Units (환기 유무에 따른 CIGS BIPV 커튼월 유닛의 성능 비교 분석)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.47-57
    • /
    • 2017
  • CIGS thin film solar cells are technically suitable for BIPV applications than regularly used crystalline silicon solar cells. Particularly, CIGS PV has lower temperature coefficient than crystalline silicon PV, thus decrease in power generation is lowered in CIGS PV. Moreover, CIGS PV can decrease shading loss when applied to the BIPV system, and the total annual power generation is higher than crystalline silicon. However, there are few studies on the installation factors affecting the performance of BIPV system with CIGS module. In this study, BIPV curtain wall unit with CIGS PV module was designed. To prevent increase of temperature of CIGS PV module by solar radiation, ventilation was considered at the backside of the unit. The thermal specification and electrical performance of CIGS PV of the ventilated unit was analyzed experimentally. Non-ventilated unit was also investigated and compared with ventilated unit. The results showed that the average CIGS temperature of the ventilated curtain wall unit was $6.8^{\circ}C$ lower than non-ventilated type and the efficiency and power generation performance of ventilated CIGS PV on average was, respectively, about 6% and 5.8% higher than the non-ventilated type.

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.

Effects of Operating Parameters on Ozone Production by Plasma Gun for Ballast Water Treatment (밸러스트 수 처리를 위한 Plasma Gun의 오존생성에 미치는 운전변수의 영향)

  • Lee, Hyeon-Don;Kim, Jong-Oh;Chung, Jae-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.205-211
    • /
    • 2010
  • Effects of operating parameters on electrical properties and ozone generation of Plasma Gun for ballast water treatment were investigated in a laboratory scale experiment. Electrical discharges and ozone generation initiated with applying voltages higher than discharge onset value. Ozone concentration was almost linearly increased with the increase of applied voltage. The optimum electrode gap distance which gave the optimum energy efficiency of ozone generation was 1.95 mm in the experimented apparatus. The effect of inner electrode material on the electrical energy transfer was negligible, however, the difference of electrical and thermal conductivities between electrode materials significantly influenced the ozone generation. In a constant geometrical structure, the electrical energy density played an important role in the ozone generation. The increase of oxygen content in the feeding gas enhanced the ozone generation by lowering ionization potential and promoting ozone source.

A Study for Improving Thermal Performance According to Variables of Perforated Baffle in Air-type PVT Collector (공기식 PVT 컬렉터에 적용된 타공 베플의 변수에 따른 열 성능 향상을 위한 연구)

  • Yu, Ji-Suk;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.83-91
    • /
    • 2019
  • Photovoltaic thermal (PVT) collectors are devices that simultaneously produce electricity and heat. Research on conventional air-type PVT collector focuses on installing baffles to enhance the collector's thermal performance. However, the baffles have pressure drop inside the collector which degrades the thermal performance. Thus, it is necessary to design baffles to smoothen the flow inside the air-type PVT collector. Alternatively, installing perforated baffles in air-type PVT collectors can reduce the collector weight, but parameters such as the diameter of the perforated holes and the height of the perforated plates should be considered. Therefore, the main aim of this study was to analyze thermal characteristics of each variable of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through NX program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. Therefore, the main aim of this study was to analyze thermal characteristics of each variable (Baffle angle, length, height, pitch, perforated ratio) of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through CFD program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. As a result, the maximum outlet temperature was increased by 1.45 times and the heat gain was increased by 193.8 Wth, depending on the perforated baffle plate, compared to the collector without the baffle. The heat transfer performance showed that the maximum internal velocity was 1.61 times higher and the Reynolds number was 1.06 times higher depending on the parameters of the baffle plate.

Energy efficient Sensor Network for ubiquitous greenhouse by using Wireless Mesh Networks (유비쿼터스 그린하우스를 위한 무선 메쉬 네트워크를 이용한 에너지 효율적인 센서 네트워크)

  • Im, Hyuk-Jin;Ju, Hui-Dong;Lee, Meong-Hun;Yoe, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2307-2314
    • /
    • 2008
  • The study that automates the variety of equipment using the USN(Ubiquitous Sensor Networks) has been executed, and the research field is ranged to almost all fields including a road, harbors. building, military affairs, agriculture and home. By deploying these sensors into the greenhouse environment, we can monitor the environmental change and the growth of plants 24 hours a day. However, the limited resources of a sensor node like limited energy, short transmission range etc, make it difficult to expand the size of the sensor networks. In this paper, we studied to expand the site of sensor networks by using WMN(Wireless Mesh Networks) with simulation. With this simulation, we could validate that using the Wireless Mesh Networks technology for expanding sensor networks is more efficient in the energy aspect than the normal sensor network.

Characterization of CO2 Gasification of 17 Coals With Regard to Coal Rank (다양한 등급의 17종 석탄의 CO2 가스화 반응특성 연구)

  • Kim, Soohyun;Yoo, Jiho;Chun, Donghyuk;Lee, Sihyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.333-341
    • /
    • 2013
  • This paper presents results on $CO_2$ gasification of 17 raw coals containing a wide range of volatile matter (21-57 wt%). The gasification is performed using a TGA under $CO_2$ and also under $N_2$ atmosphere. An amount of weight loss with increasing temperature is proportional to that of volatile matter in a coal under $N_2$ atmosphere. Reactivity of $CO_2$ gasification also increases with a content of volatile matter. However, the correlation is a little scattered. Oxygenated functional groups in a coal are generally reactive and therefore, an increase in O/C ratio leads to enhanced reactivity. However, $CO_2$ reactivity is affected by neither H/C ratio nor a content of ashes that possibly activate the gasification reaction. These findings are also applicable to steam coal gasification and the reactivity series are confirmed in the test at a fixed bed reactor.

The Optimal Energy Mix in South Korea's Electricity Sector for Low Carbon Energy Transition in 2030: In Consideration of INDC and Sequential Shutdown of Decrepit Nuclear Power Plants (저탄소 에너지 전환을 위한 2030년 최적전력구성비: 노후 원전 단계적 폐쇄와 INDC를 고려한 시나리오)

  • Kim, Dongyoon;Hwang, Minsup
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.479-494
    • /
    • 2017
  • After Fukushima incident, negative sentiment towards nuclear power has led to transition in policies that reduce the dependency on nuclear power in some countries. President Moon of Republic of Korea also announced a national plan of decommissioning retired nuclear power plants stage by stage. Therefore, nuclear power that once was considered the critical solution to energy security and climate change is now a limited option. This study aims to find an optimal energy mix in Korea's electricity system from 2016 through 2030 to combat climate change through energy transition with minimum cost. The study is divided into two different scenarios; energy transition and nuclear sustenance, to compare the total costs of the systems. Both scenarios show that electricity generated by wind technology increases from 2018 whereas that of photovoltaic(PV) increases from 2021. However, the total cost of the energy transition scenario was USD 4.7 billion more expensive than the nuclear sustenance scenario.

A Study on Energy-saving Landscape Facilities through a Park User's Attitude Survey - Focused on Urban Parks in Gimpo - (공원이용자 의식조사를 통한 에너지 절약형 조경시설물 도입에 대한 연구 - 김포시 근린공원을 중심으로 -)

  • Doo, Chul-Eon;Lee, Jae-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.3
    • /
    • pp.17-28
    • /
    • 2012
  • This study aims to present the ground for the introduction of energy-saving landscape facilities which can meet the requirements of the age and create a new space by introducing the facilities which saves energy and that users prefer at the space where urbanites enjoy leisure activities in the urban parks. Thus, in addition to a spatial analysis of the parks for 10 urban parks in Gimpo, through an attitude survey on the users' behaviors, the following conclusions were drawn out. First, as a result of putting all facilities in the urban parks in Gimpo, on average, 6.9 out of the standards of 9 (76.6%) have been installed, and as a result of an analysis on the total number of the installed facilities, on average, about 28 kinds of facilities have been installed, so only 22.4% of the total 125 facilities were installed. Second, many urbanites are using the parks for the purpose of taking a walk and exercise to improve their health; however, the legal standards regulate only 2.9 exercise facilities on average in the target area, which are somewhat insufficient. Third, regarding the citizens' intent to participate in responding to climate change, 76% of them showed their intention of participation. Thus, if the energy-saving facilities, the purpose of this study, are introduced, many users will use them, and it is judged that costs for existing street lights and electric power plants will decrease. Fourth, as a result of an analysis of their satisfaction with the facilities, the value of R-square meaning the explanatory power of the independent variables put in a linear model for dependent variables was 0.860, approximately 81% of the total satisfaction, which was a high explanatory power. This study conducted an attitude survey on the users of urban parks in Gimpo at the dimensions of the introduction of energy-saving facilities in the urban parks, the national policies and responses to climate change. It is significant that it identified the appropriateness of developing much more energy-saving landscape facilities needed for low-carbon green growth in various types, and as a subsequent project, a more precision study on this is necessary continuously.