• Title/Summary/Keyword: Green Chemistry

Search Result 942, Processing Time 0.036 seconds

Synthesis and Characterization of Mica Coated with Zinc Oxide Nanoparticles (산화 아연 나노 입자로 도포된 마이카의 합성 및 특성 규명)

  • Kil, Hyun Suk;Kim, Young Ho;Park, Minyoung;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.271-278
    • /
    • 2012
  • In this work, we have prepared the nanocomposite by the reaction of mica and zinc oxide, and investigated the application of nanocomposite to UV protecting creams. Mica treated with 3-aminopropyltrimethoxysilane (APTMS) reacted with 1,4-phenylenediisothiocyanate (PDC) to give -N=C=S functionalized surface, which was further reacted with zinc oxides coated with APTMS to give mica-zinc oxide nanocomposites. The composites were characterized by EA, EDS, TGA, SEM, zeta potential measurement, powder XRD, and DRS UV/Vis analyses. Finally, we measured transmittances of ultraviolet protection creams manufactured by using mica composite covered with zinc oxides in the range of 280~400 nm. The nanocomposites developed in this work might be applicable as inorganic hybrid materials for UV protecting creams.

Enzymatic Hydrolysis of Pre-treated Ulva pertusa with Alkaline Peroxide (구멍갈파래의 알칼리 과산화수소 전처리 및 효소 가수분해 특성)

  • Yoon, Byung-Tae;Kim, Young-Wun;Chung, Keun-Wo;Kim, Jin-Seog
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.336-339
    • /
    • 2011
  • Algae is an abundant and potential fermentation substrate. The enzymatic hydrolysis of algae was investigated by pre-treating an alkaline hydrogen peroxide with commercial cellulase and viscozyme. Algae used in this study was the Ulva pertusa. The evaluated response was the yield of released glucose after the enzymatic hydrolysis. Alkaline hydrogen peroxide containing mixtures of 1 wt% hydrogen peroxide and 1~1.75 wt% sodium hydroxide was also used. The results show that the highest glucose conversion was obtained for Ulva pertusa using 5 wt% hydrogen peroxide at $60^{\circ}C$ for 3 h. The required amount of enzymes after the pre-treatment with alkaline hydrogen peroxide were reduced by far compared to that of untreated Ulva pertusa. Also, the amount of glucose that is released during the enzymatic hydrolysis was increased.

Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst (금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향)

  • Kim, Han-Gyu;Yang, Yoon-Cheol;Jeong, Kwang-Eun;Kim, Tae-Wan;Jeong, Soon-Yong;Kim, Chul-Ung;Jhung, Sung Hwa;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.418-425
    • /
    • 2013
  • The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/$Al_2$ ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption ($NH_3$-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/$Al_2$ ratio of ZSM-5 is about 50~80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of $437^{\circ}C$ and WHSV of $0.8h^{-1}$.

A modified electrode by a facile green preparation of reduced graphene oxide utilizing olive leaves extract

  • Baioun, Abeer;Kellawi, Hassan;Falah, Ahamed
    • Carbon letters
    • /
    • v.24
    • /
    • pp.47-54
    • /
    • 2017
  • Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.

Fuctionalization of SBA-16 Mesoporous Materials with Cobalt(III) Cage Amine Complex

  • Han, Sang-Cheol;Sujandi, Sujandi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1381-1384
    • /
    • 2005
  • Surface modification of tridimensional cubic mesoporous silica, SBA-16, was investigated with pendant arm functionalized cobalt diaminosarcophagine (diAMsar) cage complex which covalently grafted onto the silica surface through the silication with sylanol group. The spectroscopic results showed that the mesoporous structure was preserved under the $[Co(diAMsar)]^{3+}$ grafting reaction condition. Successful grafting prevented the cobalt diAMsar cage from leaching out from the SBA-16 support.

Preparation of needle coke from petroleum by-products

  • Halim, Humala Paulus;Im, Ji Sun;Lee, Chul Wee
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.152-161
    • /
    • 2013
  • Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.

Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation

  • Song, Yujin;Kim, Dongil;Lee, Ha-Jin;Lee, Hyosun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2929-2934
    • /
    • 2014
  • The reaction between $[CdBr_2{\cdot}4H_2O]$ and anhydrous $[ZnCl_2]$ with N,N'-bidentate N-(pyridin-2-ylmethylene)-cyclopentanamine (impy) in ethanol yields dimeric $[(impy)Cd({\mu}-Br)Br]_2$ and monomeric $[(impy)ZnCl_2]$ complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in $[(impy)Cd({\mu}-Br)Br]_2$ and zinc in $[(impy)ZnCl_2]$ formed a distorted trigonal-bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.

Structural Isomers and Excited States of HN3

  • Cho, Ji-Eun;Lee, Hee-Soon;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3641-3643
    • /
    • 2011
  • Multiconfigurational wavefunctions were adopted to study structural isomers, their isomerization reactions and excited states of $HN_3$. In addition to the known linear isomer, two new structural isomers were found. The three isomers can be classified as sp, $sp^2$ and $sp^3$ hybridized species, respectively. The sp3 hybridized species turned out to be the second most stable. Large reaction barriers among these species prevent thermal isomerizations. A low-lying $^3A'$ exists with a relative energy of 13.5 kcal/mol. Dramatic re-hybridization and bond elongation was found in the first excited $^1A"$.