DOI QR코드

DOI QR Code

Preparation of needle coke from petroleum by-products

  • Halim, Humala Paulus (Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Im, Ji Sun (Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Lee, Chul Wee (Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology)
  • Received : 2013.05.27
  • Accepted : 2013.06.27
  • Published : 2013.07.31

Abstract

Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.

Keywords

References

  1. Organization of the Petroleum Exporting Countries (OPEC). World crude oil production by country. Ann Stat Bull, 30 (2012).
  2. Acciarri JA, Stockman GH. Demand for superpremium needle cokes on upswing. Oil Gas J, 87, 118 (1989).
  3. StratMin Global Resources Plc. Introduction to Graphite Production in Madagascar, StratMin Global Resources Plc, London, UK (2013). Available from: http://www.proactiveinvestors.co.uk/genera/ files/companies/stratmin_3.pdf.
  4. Predel H. Petroleum coke. In: Bohnet M, ed. Ullmann's Encyclopedia of Industrial Chemistry. 7th ed., Wiley-VCH, Weinheim, 361 (2012).
  5. ASM International. Thermal expansion. In: Cverna F, ASM International. Materials Properties Database Committee, eds. ASM Ready Reference Thermal Properties of Metals, ASM International, Materials Park, OH, 9 (2002).
  6. Marsh H, Heintz EA, Rodriguez-Reinoso F. Introduction to Carbon Technologies, Universidad de Alicante, Alicante, Spain, 491, 496, 521 (1997).
  7. de Castro LD. Anisotropy and mesophase formation towards carbon fibre production from coal tar and petroleum pitches - a review. J Braz Chem Soc, 17, 1096 (2006). http://dx.doi.org/10.1590/S0103-50532006000600006.
  8. Friel JJ, Mehta S, Mitchell GD, Karpinski JM. Direct observation of the mesophase in coal. Fuel, 59, 610 (1980). http://dx.doi.org/10.1016/0016-2361(80)90121-0.
  9. Brooks JD, Taylor GH. The formation of some graphitizing carbons. In: Walker PL, Radovic LR, eds. Chemistry and Physics of Carbon Vol 4, Marcel Dekker, New York, 243 (1965).
  10. Nelson HW. Petroleum coke handling problems. Ind Eng Chem Prod Res Dev, 9, 176 (1970). http://dx.doi.org/10.1021/i360034a011.
  11. Sawarkar AN, Pandit AB, Samant SD, Joshi JB. Petroleum residue upgrading via delayed coking: a review. Can J Chem Eng, 85, 1 (2007). http://dx.doi.org/10.1002/cjce.5450850101.
  12. Mochida I, Korai Y, Wang YG, Hong SH. Preparation and Properties of Mesophase Pitches. In: Pierre D, ed. Graphite and Precursors, Gordon and Breach, Amsterdam, The Netherlands, 221 (2001).
  13. Lewis IC. Chemistry of carbonization. Carbon, 20, 519 (1982). http://dx.doi.org/10.1016/0008-6223(82)90089-6.
  14. Mochida I, Oyama T, Fei Y, Furuno T, Korai Y. Optimization of carbonization conditions for needle coke production from a lowsulphur petroleum vacuum residue. J Mater Sci, 23, 298 (1988). http://dx.doi.org/10.1007/BF01174069.
  15. Marsh H, Dachille F, Melvin J, Walker PL, Jr. The carbonisation of anthracene and biphenyl under pressures of 300 MNm (3 kbar). Carbon, 9, 159 (1971). http://dx.doi.org/10.1016/0008-6223(71)90128-X.
  16. Heavy Oil Division. Refining section of the Japan Petroleum Institute. J Jpn Petrol Inst, 24, 44 & 54 (1981).
  17. Jacob RR. Coke quality and how to make it. Hydrocarbon Process, 9, 132 (1971).
  18. Wang G, Eser S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development. Energy Fuels, 21, 3563 (2007). http://dx.doi.org/10.1021/ef0605403.
  19. Eser S, Jenkins RG. Carbonization of petroleum feedstocks II: Chemical constitution of feedstock asphaltenes and mesophase development. Carbon, 27, 889 (1989). http://dx.doi.org/10.1016/0008-6223(89)90039-0.
  20. Tano T, Oyama T, Oda T, Fujinaga I, Hashisaka H. Process for producing needle coke for graphite electrode and stock oil composition for use in the process. European Patent EP2336267 A1 (2011).
  21. Tano T, Oyama T, Oda T, Fujinaga I, Hashisaka H. Process for producing needle coke for graphite electrode and stock oil composition for use in the process. US Patent US20110186478 A1 (2011).
  22. Mochida I, Oyama T, Korai Y, Fei YQ. Study of carbonization using a tube bomb: evaluation of lump needle coke, carbonization mechanism and optimization. Fuel, 67, 1171 (1988). http://dx.doi.org/10.1016/0016-2361(88)90033-6.
  23. Song S, Cheng X. The influence of alkyl group on needle coke formation. Adv Mater Res, 335-336, 1433 (2011). http://dx.doi.org/10.4028/www.scientific.net/AMR.335-336.1433.
  24. Speight JG. The Chemistry and Technology of Petroleum, Marcel Dekker, New York, 200 (1980).
  25. Dickakian G. Process for deasphaltenating cat cracker bottoms and for production of anisotropic pitch. US Patent US4427531 A (1984).
  26. Eser S, Jenkins RG. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development. Carbon, 27, 877 (1989). http://dx.doi.org/10.1016/0008-6223(89)90038-9.
  27. Mochida I, Korai Y, Oyama T, Nesumi Y, Todo Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke. Carbon, 27, 359 (1989). http://dx.doi.org/10.1016/0008-6223(89)90067-5.
  28. Mochida I, Korai Y, Fujitsu H, Oyama T, Nesumi Y. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb. Carbon, 25, 259 (1987). http://dx.doi.org/10.1016/0008-6223(87)90124-2.
  29. Nesumi Y, Oyama T, Todo Y, Azuma A, Mochida I, Korai Y. Properties of fluid catalytic cracking decant oils of different origins in their single carbonization and cocarbonization with a petroleum vacuum residue. Ind Eng Chem Res, 29, 1793 (1990). http://dx.doi.org/10.1021/ie00105a009.
  30. Mochida I, Oyama T, Korai Y. Formation scheme of needle coke from FCC-decant oil. Carbon, 26, 49 (1988). http://dx.doi.org/10.1016/0008-6223(88)90008-5.
  31. Park Y, Korai Y, Mochida I. Preparation of anisotropic mesophase pitch by carbonization under vacuum. J Mater Sci, 21, 424 (1986). http://dx.doi.org/10.1007/BF01145504.
  32. Mochida I, Marsh H. Carbonization and liquid-crystal (mesophase) development. 11. The co-carbonization of low-rank coals with modified petroleum pitches. Fuel, 58, 797 (1979). http://dx.doi.org/10.1016/0016-2361(79)90185-6.
  33. Mochida I, Ando T, Maeda K, Takeshita K. Catalytic carbonization of aromatic hydrocarbons-VII. Carbonization mechanism of heterocyclic nitrogen compounds catalyzed by aluminum chloride. Carbon, 16, 453 (1978). http://dx.doi.org/10.1016/0008-6223(78)90092-1.
  34. Mochida I, Nakamura EI, Maeda K, Takeshita K. Carbonization of aromatic hydrocarbons-IV: Reaction path of carbonization catalyzed by alkali metals. Carbon, 14, 123 (1976). http://dx.doi.org/10.1016/0008-6223(76)90121-4.
  35. Nesumi Y, Todo Y, Oyama T, Mochida I, Korai Y. Carbonization in the tube bomb leading to needle coke: II. Mechanism of cocarbonization of a petroleum vacuum residue and a FCC-decant oil. Carbon, 27, 367 (1989). http://dx.doi.org/10.1016/0008-6223(89)90068-7.
  36. Marsh H, Walker PL. The formation of graphitizable carbon via mesophase: chemical and kinetic considerations. In: Walker PL, Jr., Thrower PA, eds. Chemistry and Physics of Carbon Vol 15, Marcel Dekker, New York, 229 (1979).
  37. Mochida I, Amamoto K, Maeda K, Takeshita K. Quantitative description and modification of cocarbonization compatibility of pitch fractions. Fuel, 57, 225 (1978). http://dx.doi.org/10.1016/0016-2361(78)90120-5.
  38. Korai Y, Mochida I. Co-carbonization processes of a petroleum asphalt and coal-derived liquids: an approach to co-carbonization compatibility. Fuel, 62, 893 (1983). http://dx.doi.org/10.1016/0016-2361(83)90155-2.
  39. Mochida I, Korai Y, Fei YQ, Oyama T. Optimum carbonization conditions needed to form needle coke. Oil Gas J, 86, 73 (1988).
  40. Kuchhal YK. Feasibility of needle coke production in India. Res Ind, 27, 30 (1982).
  41. Didchenko R, Lewis IC. Method of forming an electrode from a sulfur containing decant oil feedstock. US Patent US5167796 A (1992).
  42. Hsu HL. Non-puffing petroleum coke. US Patent US4334980 A (1982).
  43. Marsh H, Foster JM, Hermon G, Iley M, Melvin JN. Carbonization and liquid-crystal (mesophase) development. Part 3. Co-carbonization of aromatic and heterocyclic compounds containing oxygen, nitrogen and sulphur. Fuel, 52, 243 (1973). http://dx.doi.org/10.1016/0016-2361(73)90052-5.
  44. Weinberg VL, Sadeghi MA, Yen TF. Method of optimizing mesophase formation in graphite and coke precursors. US Patent 4773985 (1988).
  45. Obara T, Yokono T, Sanada Y, Marsh H. Carbonization behaviour of pitch in the presence of inert material. Fuel, 64, 995 (1985). http://dx.doi.org/10.1016/0016-2361(85)90157-7.
  46. Marsh H, de Lopez H, Qian Z. Co-carbonization of Ashland A240 petroleum pitch with alkali metal carbonates and hydroxides. Fuel, 63, 1594 (1984). http://dx.doi.org/10.1016/0016-2361(84)90233-3.
  47. Wang YG, Korai Y, Mochida I, Nagayama K, Hatano H, Fukuda N. Modification of synthetic mesophase pitch with iron oxide, Fe2O3. Carbon, 39, 1627 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00281-5.
  48. Boudou JP, Begin D, Alain E, Furdin G, Mareche JF, Albiniak A. Effects of $FeCl_3$ (intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch. Fuel, 77, 601 (1998). http://dx.doi.org/10.1016/S0016-2361(97)00143-9.
  49. Song H, Chen X, Chen X, Zhang S, Li H. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon, 41, 3037 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00430-5.
  50. Ramos-Fernandez JM, Martinez-Escandell M, Reinoso FR. Preparation of mesophase pitch doped with TiO2 or TiC particles. J Anal Appl Pyrolysis, 80, 477 (2007). http://dx.doi.org/10.1016/j.jaap.2007.06.005.
  51. Gimaev RN, Valyavin GG, Voloshin ND, Fryazinov VV, Slutskaya SM. Expansion of resources and improvement of quality of petroleum electrode coke. Chem Technol Fuels Oils, 15, 478 (1980). http://dx.doi.org/10.1007/BF00723697.
  52. Mochida I, Korai Y, Oyama T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains. Carbon, 25, 273 (1987). http://dx.doi.org/10.1016/0008-6223(87)90126-6.
  53. Mochida I, Korai Y, Nesumi Y, Oyama T. Carbonization in a tube bomb. 1. Carbonization of petroleum residue into a lump of needle coke. Ind Eng Chem Prod Res Dev, 25, 198 (1986). http://dx.doi.org/10.1021/i300022a013.
  54. Tomkow K, Siemieniewska T, Czechowski F, Jankowska A. Formation of porous structures in activated brown-coal chars using O2, CO2 and H2O as activating agents. Fuel, 56, 121 (1977). http://dx.doi.org/10.1016/0016-2361(77)90129-6.
  55. Mochida I, Korai Y, Wang MZ. Effects of preheat-treatment on the bulk density of semi-cokes produced from petroleum and coal derived pitches. J Fuel Soc Jpn, 63, 41 (1984). http://dx.doi.org/10.3775/jie.63.41.
  56. Mochida I, Oyama T, Korai Y. Improvements to needle-coke quality by pressure reductions from a tube reactor. Carbon, 26, 57 (1988). http://dx.doi.org/10.1016/0008-6223(88)90009-7.
  57. Jieming X, Guo F, Minglan G, Yanqing Z. Preparation of high quality needle coke from FCC decant oil. Lect Notes Inf Technol, 22, 6 (2012).
  58. Eser S. Mesophase and pyrolytic carbon formation in aircraft fuel lines. Carbon, 34, 539 (1996). http://dx.doi.org/10.1016/0008-6223(96)00007-3.

Cited by

  1. Mesophase formation behavior in petroleum residues vol.16, pp.3, 2015, https://doi.org/10.5714/CL.2015.16.3.171
  2. Effect of Operating Conditions and Additives on the Product Yield and Sulfur Content in Thermal Cracking of a Vacuum Residue from the Abadan Refinery vol.29, pp.8, 2015, https://doi.org/10.1021/acs.energyfuels.5b00919
  3. Supercritical Fluid Extraction of Fluid Catalytic Cracking Slurry Oil: Bulk Property and Molecular Composition of Narrow Fractions vol.30, pp.12, 2016, https://doi.org/10.1021/acs.energyfuels.6b01132
  4. Determination of sulfur and trace elements in petroleum coke by X-ray fluorescent spectrometry vol.60, pp.6, 2017, https://doi.org/10.3103/S1068364X17060035
  5. Thermal Conversion Characteristics of Coal Tar Soft Pitch at Atmospheric and Elevated Pressures vol.1015, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1015.467