1 |
Organization of the Petroleum Exporting Countries (OPEC). World crude oil production by country. Ann Stat Bull, 30 (2012).
|
2 |
Acciarri JA, Stockman GH. Demand for superpremium needle cokes on upswing. Oil Gas J, 87, 118 (1989).
|
3 |
StratMin Global Resources Plc. Introduction to Graphite Production in Madagascar, StratMin Global Resources Plc, London, UK (2013). Available from: http://www.proactiveinvestors.co.uk/genera/ files/companies/stratmin_3.pdf.
|
4 |
Predel H. Petroleum coke. In: Bohnet M, ed. Ullmann's Encyclopedia of Industrial Chemistry. 7th ed., Wiley-VCH, Weinheim, 361 (2012).
|
5 |
ASM International. Thermal expansion. In: Cverna F, ASM International. Materials Properties Database Committee, eds. ASM Ready Reference Thermal Properties of Metals, ASM International, Materials Park, OH, 9 (2002).
|
6 |
Marsh H, Heintz EA, Rodriguez-Reinoso F. Introduction to Carbon Technologies, Universidad de Alicante, Alicante, Spain, 491, 496, 521 (1997).
|
7 |
de Castro LD. Anisotropy and mesophase formation towards carbon fibre production from coal tar and petroleum pitches - a review. J Braz Chem Soc, 17, 1096 (2006). http://dx.doi.org/10.1590/S0103-50532006000600006.
DOI
ScienceOn
|
8 |
Friel JJ, Mehta S, Mitchell GD, Karpinski JM. Direct observation of the mesophase in coal. Fuel, 59, 610 (1980). http://dx.doi.org/10.1016/0016-2361(80)90121-0.
DOI
ScienceOn
|
9 |
Brooks JD, Taylor GH. The formation of some graphitizing carbons. In: Walker PL, Radovic LR, eds. Chemistry and Physics of Carbon Vol 4, Marcel Dekker, New York, 243 (1965).
|
10 |
Nelson HW. Petroleum coke handling problems. Ind Eng Chem Prod Res Dev, 9, 176 (1970). http://dx.doi.org/10.1021/i360034a011.
DOI
|
11 |
Sawarkar AN, Pandit AB, Samant SD, Joshi JB. Petroleum residue upgrading via delayed coking: a review. Can J Chem Eng, 85, 1 (2007). http://dx.doi.org/10.1002/cjce.5450850101.
DOI
|
12 |
Mochida I, Korai Y, Wang YG, Hong SH. Preparation and Properties of Mesophase Pitches. In: Pierre D, ed. Graphite and Precursors, Gordon and Breach, Amsterdam, The Netherlands, 221 (2001).
|
13 |
Lewis IC. Chemistry of carbonization. Carbon, 20, 519 (1982). http://dx.doi.org/10.1016/0008-6223(82)90089-6.
DOI
ScienceOn
|
14 |
Mochida I, Oyama T, Fei Y, Furuno T, Korai Y. Optimization of carbonization conditions for needle coke production from a lowsulphur petroleum vacuum residue. J Mater Sci, 23, 298 (1988). http://dx.doi.org/10.1007/BF01174069.
DOI
|
15 |
Marsh H, Dachille F, Melvin J, Walker PL, Jr. The carbonisation of anthracene and biphenyl under pressures of 300 MNm (3 kbar). Carbon, 9, 159 (1971). http://dx.doi.org/10.1016/0008-6223(71)90128-X.
DOI
ScienceOn
|
16 |
Heavy Oil Division. Refining section of the Japan Petroleum Institute. J Jpn Petrol Inst, 24, 44 & 54 (1981).
|
17 |
Tano T, Oyama T, Oda T, Fujinaga I, Hashisaka H. Process for producing needle coke for graphite electrode and stock oil composition for use in the process. European Patent EP2336267 A1 (2011).
|
18 |
Jacob RR. Coke quality and how to make it. Hydrocarbon Process, 9, 132 (1971).
|
19 |
Wang G, Eser S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development. Energy Fuels, 21, 3563 (2007). http://dx.doi.org/10.1021/ef0605403.
DOI
ScienceOn
|
20 |
Eser S, Jenkins RG. Carbonization of petroleum feedstocks II: Chemical constitution of feedstock asphaltenes and mesophase development. Carbon, 27, 889 (1989). http://dx.doi.org/10.1016/0008-6223(89)90039-0.
DOI
ScienceOn
|
21 |
Tano T, Oyama T, Oda T, Fujinaga I, Hashisaka H. Process for producing needle coke for graphite electrode and stock oil composition for use in the process. US Patent US20110186478 A1 (2011).
|
22 |
Mochida I, Oyama T, Korai Y, Fei YQ. Study of carbonization using a tube bomb: evaluation of lump needle coke, carbonization mechanism and optimization. Fuel, 67, 1171 (1988). http://dx.doi.org/10.1016/0016-2361(88)90033-6.
DOI
ScienceOn
|
23 |
Song S, Cheng X. The influence of alkyl group on needle coke formation. Adv Mater Res, 335-336, 1433 (2011). http://dx.doi.org/10.4028/www.scientific.net/AMR.335-336.1433.
DOI
|
24 |
Speight JG. The Chemistry and Technology of Petroleum, Marcel Dekker, New York, 200 (1980).
|
25 |
Dickakian G. Process for deasphaltenating cat cracker bottoms and for production of anisotropic pitch. US Patent US4427531 A (1984).
|
26 |
Eser S, Jenkins RG. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development. Carbon, 27, 877 (1989). http://dx.doi.org/10.1016/0008-6223(89)90038-9.
DOI
ScienceOn
|
27 |
Mochida I, Oyama T, Korai Y. Formation scheme of needle coke from FCC-decant oil. Carbon, 26, 49 (1988). http://dx.doi.org/10.1016/0008-6223(88)90008-5.
DOI
ScienceOn
|
28 |
Mochida I, Korai Y, Oyama T, Nesumi Y, Todo Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke. Carbon, 27, 359 (1989). http://dx.doi.org/10.1016/0008-6223(89)90067-5.
DOI
ScienceOn
|
29 |
Mochida I, Korai Y, Fujitsu H, Oyama T, Nesumi Y. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb. Carbon, 25, 259 (1987). http://dx.doi.org/10.1016/0008-6223(87)90124-2.
DOI
ScienceOn
|
30 |
Nesumi Y, Oyama T, Todo Y, Azuma A, Mochida I, Korai Y. Properties of fluid catalytic cracking decant oils of different origins in their single carbonization and cocarbonization with a petroleum vacuum residue. Ind Eng Chem Res, 29, 1793 (1990). http://dx.doi.org/10.1021/ie00105a009.
DOI
|
31 |
Park Y, Korai Y, Mochida I. Preparation of anisotropic mesophase pitch by carbonization under vacuum. J Mater Sci, 21, 424 (1986). http://dx.doi.org/10.1007/BF01145504.
DOI
|
32 |
Mochida I, Marsh H. Carbonization and liquid-crystal (mesophase) development. 11. The co-carbonization of low-rank coals with modified petroleum pitches. Fuel, 58, 797 (1979). http://dx.doi.org/10.1016/0016-2361(79)90185-6.
DOI
ScienceOn
|
33 |
Mochida I, Ando T, Maeda K, Takeshita K. Catalytic carbonization of aromatic hydrocarbons-VII. Carbonization mechanism of heterocyclic nitrogen compounds catalyzed by aluminum chloride. Carbon, 16, 453 (1978). http://dx.doi.org/10.1016/0008-6223(78)90092-1.
DOI
ScienceOn
|
34 |
Mochida I, Nakamura EI, Maeda K, Takeshita K. Carbonization of aromatic hydrocarbons-IV: Reaction path of carbonization catalyzed by alkali metals. Carbon, 14, 123 (1976). http://dx.doi.org/10.1016/0008-6223(76)90121-4.
DOI
ScienceOn
|
35 |
Korai Y, Mochida I. Co-carbonization processes of a petroleum asphalt and coal-derived liquids: an approach to co-carbonization compatibility. Fuel, 62, 893 (1983). http://dx.doi.org/10.1016/0016-2361(83)90155-2.
DOI
ScienceOn
|
36 |
Nesumi Y, Todo Y, Oyama T, Mochida I, Korai Y. Carbonization in the tube bomb leading to needle coke: II. Mechanism of cocarbonization of a petroleum vacuum residue and a FCC-decant oil. Carbon, 27, 367 (1989). http://dx.doi.org/10.1016/0008-6223(89)90068-7.
DOI
ScienceOn
|
37 |
Marsh H, Walker PL. The formation of graphitizable carbon via mesophase: chemical and kinetic considerations. In: Walker PL, Jr., Thrower PA, eds. Chemistry and Physics of Carbon Vol 15, Marcel Dekker, New York, 229 (1979).
|
38 |
Mochida I, Amamoto K, Maeda K, Takeshita K. Quantitative description and modification of cocarbonization compatibility of pitch fractions. Fuel, 57, 225 (1978). http://dx.doi.org/10.1016/0016-2361(78)90120-5.
DOI
ScienceOn
|
39 |
Mochida I, Korai Y, Fei YQ, Oyama T. Optimum carbonization conditions needed to form needle coke. Oil Gas J, 86, 73 (1988).
|
40 |
Kuchhal YK. Feasibility of needle coke production in India. Res Ind, 27, 30 (1982).
|
41 |
Didchenko R, Lewis IC. Method of forming an electrode from a sulfur containing decant oil feedstock. US Patent US5167796 A (1992).
|
42 |
Hsu HL. Non-puffing petroleum coke. US Patent US4334980 A (1982).
|
43 |
Marsh H, Foster JM, Hermon G, Iley M, Melvin JN. Carbonization and liquid-crystal (mesophase) development. Part 3. Co-carbonization of aromatic and heterocyclic compounds containing oxygen, nitrogen and sulphur. Fuel, 52, 243 (1973). http://dx.doi.org/10.1016/0016-2361(73)90052-5.
DOI
ScienceOn
|
44 |
Weinberg VL, Sadeghi MA, Yen TF. Method of optimizing mesophase formation in graphite and coke precursors. US Patent 4773985 (1988).
|
45 |
Boudou JP, Begin D, Alain E, Furdin G, Mareche JF, Albiniak A. Effects of (intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch. Fuel, 77, 601 (1998). http://dx.doi.org/10.1016/S0016-2361(97)00143-9.
DOI
ScienceOn
|
46 |
Obara T, Yokono T, Sanada Y, Marsh H. Carbonization behaviour of pitch in the presence of inert material. Fuel, 64, 995 (1985). http://dx.doi.org/10.1016/0016-2361(85)90157-7.
DOI
ScienceOn
|
47 |
Marsh H, de Lopez H, Qian Z. Co-carbonization of Ashland A240 petroleum pitch with alkali metal carbonates and hydroxides. Fuel, 63, 1594 (1984). http://dx.doi.org/10.1016/0016-2361(84)90233-3.
DOI
ScienceOn
|
48 |
Wang YG, Korai Y, Mochida I, Nagayama K, Hatano H, Fukuda N. Modification of synthetic mesophase pitch with iron oxide, Fe2O3. Carbon, 39, 1627 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00281-5.
DOI
ScienceOn
|
49 |
Song H, Chen X, Chen X, Zhang S, Li H. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon, 41, 3037 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00430-5.
DOI
ScienceOn
|
50 |
Ramos-Fernandez JM, Martinez-Escandell M, Reinoso FR. Preparation of mesophase pitch doped with TiO2 or TiC particles. J Anal Appl Pyrolysis, 80, 477 (2007). http://dx.doi.org/10.1016/j.jaap.2007.06.005.
DOI
ScienceOn
|
51 |
Gimaev RN, Valyavin GG, Voloshin ND, Fryazinov VV, Slutskaya SM. Expansion of resources and improvement of quality of petroleum electrode coke. Chem Technol Fuels Oils, 15, 478 (1980). http://dx.doi.org/10.1007/BF00723697.
|
52 |
Mochida I, Korai Y, Oyama T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains. Carbon, 25, 273 (1987). http://dx.doi.org/10.1016/0008-6223(87)90126-6.
DOI
ScienceOn
|
53 |
Mochida I, Oyama T, Korai Y. Improvements to needle-coke quality by pressure reductions from a tube reactor. Carbon, 26, 57 (1988). http://dx.doi.org/10.1016/0008-6223(88)90009-7.
DOI
ScienceOn
|
54 |
Mochida I, Korai Y, Nesumi Y, Oyama T. Carbonization in a tube bomb. 1. Carbonization of petroleum residue into a lump of needle coke. Ind Eng Chem Prod Res Dev, 25, 198 (1986). http://dx.doi.org/10.1021/i300022a013.
DOI
|
55 |
Tomkow K, Siemieniewska T, Czechowski F, Jankowska A. Formation of porous structures in activated brown-coal chars using O2, CO2 and H2O as activating agents. Fuel, 56, 121 (1977). http://dx.doi.org/10.1016/0016-2361(77)90129-6.
DOI
ScienceOn
|
56 |
Mochida I, Korai Y, Wang MZ. Effects of preheat-treatment on the bulk density of semi-cokes produced from petroleum and coal derived pitches. J Fuel Soc Jpn, 63, 41 (1984). http://dx.doi.org/10.3775/jie.63.41.
DOI
|
57 |
Jieming X, Guo F, Minglan G, Yanqing Z. Preparation of high quality needle coke from FCC decant oil. Lect Notes Inf Technol, 22, 6 (2012).
|
58 |
Eser S. Mesophase and pyrolytic carbon formation in aircraft fuel lines. Carbon, 34, 539 (1996). http://dx.doi.org/10.1016/0008-6223(96)00007-3.
DOI
ScienceOn
|