Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.152

Preparation of needle coke from petroleum by-products  

Halim, Humala Paulus (Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology)
Im, Ji Sun (Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology)
Lee, Chul Wee (Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 152-161 More about this Journal
Abstract
Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.
Keywords
needle coke; delayed coking; mesophase; aromatic; coefficient thermal expansion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Organization of the Petroleum Exporting Countries (OPEC). World crude oil production by country. Ann Stat Bull, 30 (2012).
2 Acciarri JA, Stockman GH. Demand for superpremium needle cokes on upswing. Oil Gas J, 87, 118 (1989).
3 StratMin Global Resources Plc. Introduction to Graphite Production in Madagascar, StratMin Global Resources Plc, London, UK (2013). Available from: http://www.proactiveinvestors.co.uk/genera/ files/companies/stratmin_3.pdf.
4 Predel H. Petroleum coke. In: Bohnet M, ed. Ullmann's Encyclopedia of Industrial Chemistry. 7th ed., Wiley-VCH, Weinheim, 361 (2012).
5 ASM International. Thermal expansion. In: Cverna F, ASM International. Materials Properties Database Committee, eds. ASM Ready Reference Thermal Properties of Metals, ASM International, Materials Park, OH, 9 (2002).
6 Marsh H, Heintz EA, Rodriguez-Reinoso F. Introduction to Carbon Technologies, Universidad de Alicante, Alicante, Spain, 491, 496, 521 (1997).
7 de Castro LD. Anisotropy and mesophase formation towards carbon fibre production from coal tar and petroleum pitches - a review. J Braz Chem Soc, 17, 1096 (2006). http://dx.doi.org/10.1590/S0103-50532006000600006.   DOI   ScienceOn
8 Friel JJ, Mehta S, Mitchell GD, Karpinski JM. Direct observation of the mesophase in coal. Fuel, 59, 610 (1980). http://dx.doi.org/10.1016/0016-2361(80)90121-0.   DOI   ScienceOn
9 Brooks JD, Taylor GH. The formation of some graphitizing carbons. In: Walker PL, Radovic LR, eds. Chemistry and Physics of Carbon Vol 4, Marcel Dekker, New York, 243 (1965).
10 Nelson HW. Petroleum coke handling problems. Ind Eng Chem Prod Res Dev, 9, 176 (1970). http://dx.doi.org/10.1021/i360034a011.   DOI
11 Sawarkar AN, Pandit AB, Samant SD, Joshi JB. Petroleum residue upgrading via delayed coking: a review. Can J Chem Eng, 85, 1 (2007). http://dx.doi.org/10.1002/cjce.5450850101.   DOI
12 Mochida I, Korai Y, Wang YG, Hong SH. Preparation and Properties of Mesophase Pitches. In: Pierre D, ed. Graphite and Precursors, Gordon and Breach, Amsterdam, The Netherlands, 221 (2001).
13 Lewis IC. Chemistry of carbonization. Carbon, 20, 519 (1982). http://dx.doi.org/10.1016/0008-6223(82)90089-6.   DOI   ScienceOn
14 Mochida I, Oyama T, Fei Y, Furuno T, Korai Y. Optimization of carbonization conditions for needle coke production from a lowsulphur petroleum vacuum residue. J Mater Sci, 23, 298 (1988). http://dx.doi.org/10.1007/BF01174069.   DOI
15 Marsh H, Dachille F, Melvin J, Walker PL, Jr. The carbonisation of anthracene and biphenyl under pressures of 300 MNm (3 kbar). Carbon, 9, 159 (1971). http://dx.doi.org/10.1016/0008-6223(71)90128-X.   DOI   ScienceOn
16 Heavy Oil Division. Refining section of the Japan Petroleum Institute. J Jpn Petrol Inst, 24, 44 & 54 (1981).
17 Tano T, Oyama T, Oda T, Fujinaga I, Hashisaka H. Process for producing needle coke for graphite electrode and stock oil composition for use in the process. European Patent EP2336267 A1 (2011).
18 Jacob RR. Coke quality and how to make it. Hydrocarbon Process, 9, 132 (1971).
19 Wang G, Eser S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development. Energy Fuels, 21, 3563 (2007). http://dx.doi.org/10.1021/ef0605403.   DOI   ScienceOn
20 Eser S, Jenkins RG. Carbonization of petroleum feedstocks II: Chemical constitution of feedstock asphaltenes and mesophase development. Carbon, 27, 889 (1989). http://dx.doi.org/10.1016/0008-6223(89)90039-0.   DOI   ScienceOn
21 Tano T, Oyama T, Oda T, Fujinaga I, Hashisaka H. Process for producing needle coke for graphite electrode and stock oil composition for use in the process. US Patent US20110186478 A1 (2011).
22 Mochida I, Oyama T, Korai Y, Fei YQ. Study of carbonization using a tube bomb: evaluation of lump needle coke, carbonization mechanism and optimization. Fuel, 67, 1171 (1988). http://dx.doi.org/10.1016/0016-2361(88)90033-6.   DOI   ScienceOn
23 Song S, Cheng X. The influence of alkyl group on needle coke formation. Adv Mater Res, 335-336, 1433 (2011). http://dx.doi.org/10.4028/www.scientific.net/AMR.335-336.1433.   DOI
24 Speight JG. The Chemistry and Technology of Petroleum, Marcel Dekker, New York, 200 (1980).
25 Dickakian G. Process for deasphaltenating cat cracker bottoms and for production of anisotropic pitch. US Patent US4427531 A (1984).
26 Eser S, Jenkins RG. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development. Carbon, 27, 877 (1989). http://dx.doi.org/10.1016/0008-6223(89)90038-9.   DOI   ScienceOn
27 Mochida I, Oyama T, Korai Y. Formation scheme of needle coke from FCC-decant oil. Carbon, 26, 49 (1988). http://dx.doi.org/10.1016/0008-6223(88)90008-5.   DOI   ScienceOn
28 Mochida I, Korai Y, Oyama T, Nesumi Y, Todo Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke. Carbon, 27, 359 (1989). http://dx.doi.org/10.1016/0008-6223(89)90067-5.   DOI   ScienceOn
29 Mochida I, Korai Y, Fujitsu H, Oyama T, Nesumi Y. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb. Carbon, 25, 259 (1987). http://dx.doi.org/10.1016/0008-6223(87)90124-2.   DOI   ScienceOn
30 Nesumi Y, Oyama T, Todo Y, Azuma A, Mochida I, Korai Y. Properties of fluid catalytic cracking decant oils of different origins in their single carbonization and cocarbonization with a petroleum vacuum residue. Ind Eng Chem Res, 29, 1793 (1990). http://dx.doi.org/10.1021/ie00105a009.   DOI
31 Park Y, Korai Y, Mochida I. Preparation of anisotropic mesophase pitch by carbonization under vacuum. J Mater Sci, 21, 424 (1986). http://dx.doi.org/10.1007/BF01145504.   DOI
32 Mochida I, Marsh H. Carbonization and liquid-crystal (mesophase) development. 11. The co-carbonization of low-rank coals with modified petroleum pitches. Fuel, 58, 797 (1979). http://dx.doi.org/10.1016/0016-2361(79)90185-6.   DOI   ScienceOn
33 Mochida I, Ando T, Maeda K, Takeshita K. Catalytic carbonization of aromatic hydrocarbons-VII. Carbonization mechanism of heterocyclic nitrogen compounds catalyzed by aluminum chloride. Carbon, 16, 453 (1978). http://dx.doi.org/10.1016/0008-6223(78)90092-1.   DOI   ScienceOn
34 Mochida I, Nakamura EI, Maeda K, Takeshita K. Carbonization of aromatic hydrocarbons-IV: Reaction path of carbonization catalyzed by alkali metals. Carbon, 14, 123 (1976). http://dx.doi.org/10.1016/0008-6223(76)90121-4.   DOI   ScienceOn
35 Korai Y, Mochida I. Co-carbonization processes of a petroleum asphalt and coal-derived liquids: an approach to co-carbonization compatibility. Fuel, 62, 893 (1983). http://dx.doi.org/10.1016/0016-2361(83)90155-2.   DOI   ScienceOn
36 Nesumi Y, Todo Y, Oyama T, Mochida I, Korai Y. Carbonization in the tube bomb leading to needle coke: II. Mechanism of cocarbonization of a petroleum vacuum residue and a FCC-decant oil. Carbon, 27, 367 (1989). http://dx.doi.org/10.1016/0008-6223(89)90068-7.   DOI   ScienceOn
37 Marsh H, Walker PL. The formation of graphitizable carbon via mesophase: chemical and kinetic considerations. In: Walker PL, Jr., Thrower PA, eds. Chemistry and Physics of Carbon Vol 15, Marcel Dekker, New York, 229 (1979).
38 Mochida I, Amamoto K, Maeda K, Takeshita K. Quantitative description and modification of cocarbonization compatibility of pitch fractions. Fuel, 57, 225 (1978). http://dx.doi.org/10.1016/0016-2361(78)90120-5.   DOI   ScienceOn
39 Mochida I, Korai Y, Fei YQ, Oyama T. Optimum carbonization conditions needed to form needle coke. Oil Gas J, 86, 73 (1988).
40 Kuchhal YK. Feasibility of needle coke production in India. Res Ind, 27, 30 (1982).
41 Didchenko R, Lewis IC. Method of forming an electrode from a sulfur containing decant oil feedstock. US Patent US5167796 A (1992).
42 Hsu HL. Non-puffing petroleum coke. US Patent US4334980 A (1982).
43 Marsh H, Foster JM, Hermon G, Iley M, Melvin JN. Carbonization and liquid-crystal (mesophase) development. Part 3. Co-carbonization of aromatic and heterocyclic compounds containing oxygen, nitrogen and sulphur. Fuel, 52, 243 (1973). http://dx.doi.org/10.1016/0016-2361(73)90052-5.   DOI   ScienceOn
44 Weinberg VL, Sadeghi MA, Yen TF. Method of optimizing mesophase formation in graphite and coke precursors. US Patent 4773985 (1988).
45 Boudou JP, Begin D, Alain E, Furdin G, Mareche JF, Albiniak A. Effects of $FeCl_3$ (intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch. Fuel, 77, 601 (1998). http://dx.doi.org/10.1016/S0016-2361(97)00143-9.   DOI   ScienceOn
46 Obara T, Yokono T, Sanada Y, Marsh H. Carbonization behaviour of pitch in the presence of inert material. Fuel, 64, 995 (1985). http://dx.doi.org/10.1016/0016-2361(85)90157-7.   DOI   ScienceOn
47 Marsh H, de Lopez H, Qian Z. Co-carbonization of Ashland A240 petroleum pitch with alkali metal carbonates and hydroxides. Fuel, 63, 1594 (1984). http://dx.doi.org/10.1016/0016-2361(84)90233-3.   DOI   ScienceOn
48 Wang YG, Korai Y, Mochida I, Nagayama K, Hatano H, Fukuda N. Modification of synthetic mesophase pitch with iron oxide, Fe2O3. Carbon, 39, 1627 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00281-5.   DOI   ScienceOn
49 Song H, Chen X, Chen X, Zhang S, Li H. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon, 41, 3037 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00430-5.   DOI   ScienceOn
50 Ramos-Fernandez JM, Martinez-Escandell M, Reinoso FR. Preparation of mesophase pitch doped with TiO2 or TiC particles. J Anal Appl Pyrolysis, 80, 477 (2007). http://dx.doi.org/10.1016/j.jaap.2007.06.005.   DOI   ScienceOn
51 Gimaev RN, Valyavin GG, Voloshin ND, Fryazinov VV, Slutskaya SM. Expansion of resources and improvement of quality of petroleum electrode coke. Chem Technol Fuels Oils, 15, 478 (1980). http://dx.doi.org/10.1007/BF00723697.
52 Mochida I, Korai Y, Oyama T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains. Carbon, 25, 273 (1987). http://dx.doi.org/10.1016/0008-6223(87)90126-6.   DOI   ScienceOn
53 Mochida I, Oyama T, Korai Y. Improvements to needle-coke quality by pressure reductions from a tube reactor. Carbon, 26, 57 (1988). http://dx.doi.org/10.1016/0008-6223(88)90009-7.   DOI   ScienceOn
54 Mochida I, Korai Y, Nesumi Y, Oyama T. Carbonization in a tube bomb. 1. Carbonization of petroleum residue into a lump of needle coke. Ind Eng Chem Prod Res Dev, 25, 198 (1986). http://dx.doi.org/10.1021/i300022a013.   DOI
55 Tomkow K, Siemieniewska T, Czechowski F, Jankowska A. Formation of porous structures in activated brown-coal chars using O2, CO2 and H2O as activating agents. Fuel, 56, 121 (1977). http://dx.doi.org/10.1016/0016-2361(77)90129-6.   DOI   ScienceOn
56 Mochida I, Korai Y, Wang MZ. Effects of preheat-treatment on the bulk density of semi-cokes produced from petroleum and coal derived pitches. J Fuel Soc Jpn, 63, 41 (1984). http://dx.doi.org/10.3775/jie.63.41.   DOI
57 Jieming X, Guo F, Minglan G, Yanqing Z. Preparation of high quality needle coke from FCC decant oil. Lect Notes Inf Technol, 22, 6 (2012).
58 Eser S. Mesophase and pyrolytic carbon formation in aircraft fuel lines. Carbon, 34, 539 (1996). http://dx.doi.org/10.1016/0008-6223(96)00007-3.   DOI   ScienceOn