• Title/Summary/Keyword: Greedy 기법

Search Result 109, Processing Time 0.025 seconds

Improved Power Allocation to Enhance the Capacity in OFDMA System for Proportional Resource Allocation (Proportional 자원할당을 위한 OFDMA 시스템에서 채널 용량을 증대시키기 위한 향상된 전력 할당 기법)

  • Var, Puthnith;Shrestha, Robin;Kim, JaeMoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.580-591
    • /
    • 2013
  • The Orthogonal Frequency Division Multiple Access (OFDMA) is considered as a novel modulation and multiple access technique for 4th generation wireless systems. In this paper, we formulate a base station's power allocation algorithm for each user to maximize the user's sum rate, subject to constraints on total power, bit error rate, and rate proportionality among the users for a better proportional rate adaptive (RA) resource allocation method for OFDMA based system. We propose a novel power allocation method based on the proportion of subcarrier allocation and the user's normalized proportionality constant. We adapt a greedy algorithm and waterfilling technique for allocating the subcarriers among the users. In an end-to-end simulation, we validate that the proposed technique has higher system capacity and lower CPU execution times, while maintaining the acceptable rate proportionality among users.

Application of GPSR Protocol for Countering Selective Forwarding Attacks in Sensor Networks (센서 네트워크에서 선택적 전달 공격 방어를 위한 GPSR 프로토콜 적용)

  • Moon, Soo Young;Lee, Minjung;Cho, Tae Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.51-54
    • /
    • 2013
  • 센서 네트워크는 주변의 환경 정보를 수집하여 사용자에게 제공함으로써 지능적인 처리를 가능하게 하는 시스템이다. 센서 네트워크를 구성하는 센서 노드들은 메모리, 연산 능력, 에너지 등 자원 측면에서 제약을 갖고 있으며 무선 통신을 사용하므로 센서 네트워크 환경에서는 각종 보안 위협이 발생할 수 있다. 선택적 전달 공격에서 네트워크 내의 훼손 노드는 자신을 지나는 이벤트 보고서 중 전체 또는 일부를 제거함으로써 중요한 이벤트 정보가 싱크 노드까지 도달하지 못하도록 한다. 선택적 전달 공격을 방어하기 위한 기존 라우팅 기법은 많은 에너지 소비를 유발한다는 단점이 존재한다. 본 논문에서는 지형 기반의 라우팅 프로토콜인 Greedy Perimeter Stateless Routing (GPSR) 프로토콜을 기반으로 선택적 전달 공격 발생 지점을 우회할 수 있는 방법을 제안한다. 제안 기법은 선택적 전달 공격이 발생하는 환경에서 에너지 효율적으로 소스 노드에서 기지 노드까지 이벤트 보고서를 신뢰성 있게 전달하는데 활용될 수 있다.

  • PDF

Simultaneous Localization and Routing in Wireless Sensor Network Using Virtual Coordinates (센서네트워크에서 버추얼 코디네이트를 이용한 위치기반 라우팅 기법)

  • Chang, Hyeong-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1817-1818
    • /
    • 2007
  • 무선센서네트워크는 컴퓨텅 기술능력과 무선 통신 능력을 지닌 센서 노드들을 이용하여 자율적으로 네트워크를 형성하고 상호간에 정보를 전달한다. 최근 무선센서네트워크 기술이 유비쿼터스 사회의 핵심 기술로 부각되면서 넓은 범위의 지역에서 센싱된 데이터를 활용하는 부분에 많은 연구가 진행되고 있다. 이러한 센서네트워크에서 확장성을 고려하기 위하여 위치기반의 라우팅 기법이 사용된다. 실제위치를 이용한 방법은 GPS를 사용하여 노드의 위치를 파악한다. 그러나 이 방법은 센서노드의 프로세서 및 메모리의 용량을 초과하고, 실내에서 사용할 수 없다는 단점이 있다. 따라서 본 논문에서는 가상좌표(Virtual coordinates) 개념을 이용하여 특정 비콘노드로 부터의 홉수를 계산하여 센서노드의 위치를 계산하고, Greedy 방식의 라우팅을 통하여 실제 위치를 이용한 방법과 비교한다.

  • PDF

User Selection Scheme Based on the Projection Matrix (투영 행렬을 이용한 사용자 선택 기법)

  • Kim, Gibum;Kim, Jinwoo;Park, Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1257-1265
    • /
    • 2015
  • In this paper, we describe a greedy user selection scheme for multiuser multiple-input multiple-output (MIMO) systems. We propose a new metric which has significantly improved performance compared to the Frobenius norm metric. The approximation of projection matrix is applied to increase the accuracy of Frobenius norm of effective channel matrix. We analyze the computational complexity of two metrics by using flop counts, and also verify the achievable sum rate through numerical simulation. Our simulation result shows that the proposed metric can achieve the improved sum rate as the number of user antenna increases.

Influence Maximization against Social Adversaries (소셜 네트워크 내 경쟁 집단에의 영향력 최대화 기법)

  • Jeong, Sihyun;Noh, Giseop;Oh, Hayoung;Kim, Chong-Kwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • Online social networks(OSN) are very popular nowadays. As OSNs grows, the commercial markets are expanding their social commerce by applying Influence Maximization. However, in reality, there exist more than two players(e.g., commercial companies or service providers) in this same market sector. To address the Influence Maximization problem between adversaries, we first introduced Influence Maximization against the social adversaries' problem. Then, we proposed an algorithm that could efficiently solve the problem efficiently by utilizing social network properties such as Betweenness Centrality, Clustering Coefficient, Local Bridge and Ties and Triadic Closure. Moreover, our algorithm performed orders of magnitudes better than the existing Greedy hill climbing algorithm.

A Multi Path Routing Scheme for Data Aggregation in Wireless Sensor Networks (무선 센서 네트워크에서 데이타 병합을 위한 다중 경로 라우팅 기법)

  • Son, Hyeong-Seo;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.206-210
    • /
    • 2009
  • In this paper, we propose a new routing scheme based on multi-path routing which provides uniform energy consumption for all nodes. This scheme adds a new type of root node for constructing multi-path. The sink node delegates some partial roles to these root nodes. Such root nodes carry out path establishment independently. As a result, each nodes consume energy more uniformly and the network life-time will be extended. Through simulation, we confirmed that energy consumption of the whole network is scattered and the network life-time is extended. Moreover, we show that the proposed routing scheme improves the performance of network compared to previous routing strategies as the number of source nodes increases.

Comparison of Genetic Algorithms and Simulated Annealing for Multiprocessor Task Allocation (멀티프로세서 태스크 할당을 위한 GA과 SA의 비교)

  • Park, Gyeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2311-2319
    • /
    • 1999
  • We present two heuristic algorithms for the task allocation problem (NP-complete problem) in parallel computing. The problem is to find an optimal mapping of multiple communicating tasks of a parallel program onto the multiple processing nodes of a distributed-memory multicomputer. The purpose of mapping these tasks into the nodes of the target architecture is the minimization of parallel execution time without sacrificing solution quality. Many heuristic approaches have been employed to obtain satisfactory mapping. Our heuristics are based on genetic algorithms and simulated annealing. We formulate an objective function as a total computational cost for a mapping configuration, and evaluate the performance of our heuristic algorithms. We compare the quality of solutions and times derived by the random, greedy, genetic, and annealing algorithms. Our experimental findings from a simulation study of the allocation algorithms are presented.

  • PDF

Storage Assignment for Variables Considering Efficient Memory Access in Embedded System Design (임베디드 시스템 설계에서 효율적인 메모리 접근을 고려한 변수 저장 방법)

  • Choi Yoonseo;Kim Taewhan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.2
    • /
    • pp.85-94
    • /
    • 2005
  • It has been reported and verified in many design experiences that a judicious utilization of the page and burst access modes supported by DRAMs contributes a great reduction in not only the DRAM access latency but also DRAM's energy consumption. Recently, researchers showed that a careful arrangement of data variables in memory directly leads to a maximum utilization of the page and burst access modes for the variable accesses, but unfortunately, found that the problems are not tractable, consequently, resorting to simple (e.g., greedy) heuristic solutions to the problems. In this parer, to improve the quality of existing solutions, we propose 0-1 ILP-based techniques which produce optimal or near-optimal solution depending on the formulation parameters. It is shown that the proposed techniques use on average 32.2%, l5.1% and 3.5% more page accesses, and 84.0%, 113.5% and 10.1% more burst accesses compared to OFU (the order of first use) and the technique in [l, 2] and the technique in [3], respectively.

Pre-cluster HEAD Selection Scheme based on Node Distance in Chain-Based Protocol (체인기반 프로토콜에서 노드의 거리에 따른 예비 헤드노드 선출 방법)

  • Kim, Hyun-Duk;Choi, Won-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1273-1287
    • /
    • 2009
  • PEGASIS, a chain-based protocol, forms chains from sensor nodes so that each node transmits and receives from a neighbor. In this way, only one node (known as a HEAD) is selected from that chain to transmit to the sink. Although PEGASIS is able to balance the workload among all of the nodes by selecting the HEAD node in turn, a considerable amount of energy may be wasted when nodes which are far away from sink node act as the HEAD. In this study, DERP (Distance-based Energy-efficient Routing Protocol) is proposed to address this problem. DERP is a chain-based protocol that improves the greedy-algorithm in PEGASIS by taking into account the distance from the HEAD to the sink node. The main idea of DERP is to adopt a pre-HEAD (P-HD) to distribute the energy load evenly among sensor nodes. In addition, to scale DERP to a large network, it can be extended to a multi-hop clustering protocol by selecting a "relay node" according to the distance between the P-HD and SINK. Analysis and simulation studies of DERP show that it consumes up to 80% less energy, and has less of a transmission delay compared to PEGASIS.

  • PDF

Reference Node Selection Scheme for Estimating Relative Locations of Mobile Robots (이동 로봇의 상대위치 추정을 위한 기준노드 선택 기법)

  • Ha, Taejin;Kim, Sunyong;Park, Sun Young;Kwon, Daehoon;Ham, Jaehyun;Lim, Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.508-516
    • /
    • 2016
  • When GPS signals are not available, a relative localization can be alternatively used to represent the topological relationship between mobile nodes. A relative location map of a network can be constructed by using the distance information between all the pairs of nodes in the network. If a network is large, a number of small local maps are individually constructed and are merged to obtain the whole map. However, this approach may result in a high computation and communication overhead. In this paper, we propose a reference-node selection scheme for relative localization map construction, which chooses a subset of nodes as a reference node that is supposed to construct local maps. The scheme is a greedy algorithm that iteratively chooses nodes with high degree as a reference node until the chosen local maps are successfully merged with a sufficient number of common nodes between nearby local maps. The simulation results indicate that the proposed scheme achieves higher localization accuracy with a reduced computational overhead.