I TN SACT S v

He|Z2A 4 e e ST
GAZ SA9| vl

+
3 =
2 o

Wi o] ol NP complete SA9 flzct SR ol gk ¢orbd feaE ohuelEe A ggEds
2ol Wne) PBejdee e TR wrof o B dAtEs AAol v B=lol EH* Ges Eg s

o) wmgo] A MR sy g £ glol B AW Aaskety] Agol g Fae iuEel

b g8 o) Sleh A ol sk, 1 wEeld AN Folse e 90 HneFGA AgedeHs oy
QSA) Tl e Srh ol HAE Sl# F AN vlgon RARSEE pAseln fulan gadaEe NEe
/}au} éﬂ%’i o)), S of i el mh g AbRate] Al dlel FATF A vlumdt ¥ duels KPS
QooTE o 48d Ans selFu.

Comparison of Genetic Algorithms and Simulated Annealing
for Multiprocessor Task Allocation

Kyeongmo Park’

ABSTRACT

We present twe heuristic algorithms for the task allocation problem (NP-compiete problem) i parallel computing.
The problem is to find an optimal mapping of multiple communicating tasks of a parallel program onto the multiple
processing nodes of a distributed-memory multicomputer. The purpose of mapping these tasks into the nodes of the
target architecture is the minimization of the parallel execution time without sacrificing solution quality. Many heuristic
approaches have been emploved to obtain satisfactory mapping. Our heuristics are based on genetic algorithms and
simulated annealing. We formulate an objective function as a total computational cost for a mapping configuration, and
evaluate the performance of our heuristic algorithms, We compare the quality of solutions and times derived by the
random, greedy. genetic, and annealing algorithms. Our experimental findings from a simulation study of the allocation
algorithms are prescnted

1. Introduction the optimal mapping of multiple communicating
tasks of a parallel program onto the multiple pro-
We examine an important issue associated with cessing nodes of a scalable distributed-memory
- -) multicomputer. This issue leads to the mapping
% ¥ wEo 1997y sheehEdEagvke] FRybH A-rulel siE) .

AT S problem in parallel computing. The problem has been

14 8 o vrEE s Hi - ﬁﬁk-’a’-f&‘% wa

~EL %

waaZ . Jogkid 79 29 AR 19094 TH 09 of great research intercst since it was first described

oo EE AR S 2R MR WoEue)

by Bokharill]. The purpose of mapping multiple
tasks into the multiprocessor nodes of the parallel
architecture is the minimization of the parallel
exccution time without sacrificing solution quality.
To mmimize run time, tasks should he evenly
distributed across the nodes, while the communica-
tion cost in message passing among processors
showld be minimized. the mapping objective is An
objective function is defined to formalize the map-
ping goal as a minimization process. In general,
obtaining an optimal solution of the mapping prob-
lem is computationally intractable; the mapping problem
is known to be NP-complete[1,6]. Therefore, heu-
ristic approaches are commonly emploved to obtain a
satisfactory near-optimal solution in a reasonable
time. Task allocation in distributed-memory multi-
processor systems means a mapping of a given
problem to the target system. Task allocation con-
sists of partitioning the problem into a set of dis-
joint subproblems (tasks) and allocating these tasks
to the processors of the parallel architecture in such

a way the total computational cost is minimized.

In this paper, we present two allocation algo-
rithms. Our algorithms are based on the two types
of stochastic search and optimization techniques-
Genetic Algorithms(GA’s)7,8] and Simulated
Annealing{ SA)101. These two techniques are mod-
eled on processes found in thermodynamics, genetics,
and natural evolution, and are being used in artificial
intelligence systems. They have been applied suc-
cessfully to difficult NP-complete problems[2, 3, 4, 8,
9,11,12,13,14,15,16]. This study is motivated by the
fact that there is a lack of comparative studies of
GAs and SA. We explore the connections between
these heuristics. We also compare the mapping qual-
ities and times derived by the genetic and annealing
algorithms against those derived by a random and a
greedy allocation algorithms. A simulation is devel-
oped to evaluate the performance of the allocation
“algorithms.

We review previous task allocation strategies. The

task allocation problem and some of its dervatives
are NP-complete. Therefore, heuristic algorithms that
approximate optimal solutions have been developed.
some of these approaches(l,2,5,9, 12, 15, 17, 18] dealt,
in some manner, with the mapping of the problem
graph {a set of communicating processes) onto a target
architecture with a fixed intercormection topology.

Bokharill] proposes a mapping scheme of distri-
buted processors that uses two input adjacency ma-
trices to represent the problem graph (the job mod
ules and the intercommunications) onto the system
graph (the processors and the interconnections), and
then applies an exhaustive pairwise exchange of two
job modules. The objective function used is to
maximize graph cardinality- the number of matched
edges in the problem that fall on the links on the
system graph. The basic assumption in the scheme
is that all the problem edges are considered iden
tical, ie, they have the same weight. However,
more general problem graph may have different
weights on edges.

Lee and Aggarwallll] extend the Bokhari's
approach by incorperating a set of objective func-
tions that accurately quantify communication over
head into the problem. The optimality of mapping
the problem graph onto the system graph is eval-
uated by the objective functions with a more repre-
sentative communication overhead measure. They
has developed a mapping algorithm based on the
objective functions, where they first makes an initial
assignment and then iteratively apply a pairwise
exchange scheme to the initial assignment. The
approach is still restrictive; it utilizes a fixed path
rouiing scheme for the network traffic.

Bollinger and Midkifff2] formulate a two-phase
mapping strategy to map a logical system onto a
physical architecture using the simulated annealing
algorithm, where the first phase, process annealing,
assigns parallel processes onto processing nodes and
the connection annealing phase schedules traffic con-

nectons o network data links so as o imimhbze
Intomrocess communication conflicts, Oblective functions
that accurately quantify communication cost are de
rived to cvaluate the quality of generated mapping.
This effort improved upon [11} in which it utilizes

the information concemning the actual routing rules.

Du and Maryanski[3] attack a vadation of the
mapping problem. This variation concerns the allo
cation of data in a dynamically reconfigurable envi-
ronment. The allocation algorithm employs a set of
"benefit” functions and a greedy search algorithm.
The underlying execution architecture is based on a
client/server model, a heterogeneous system. Although
their problem closely resembles our data allocation
problem. as the underlying architectural model signi-
ficantly differs from our parallel execution envi-
ronment, their assumptions are not relevant to our

problem,

Driessche and Piessens[4} have studied the genetic
algorithm for static load balancing. They present
that combining genetic algorithms with simple heu-
ristics can drastically improve the efficiency. In their
paper, the usefulness of genetic aigorithms in the

context. of dynamic load balancing is not asscssed.

Mansour and Fox[i2l have proposed sequential
genetic algorithm for the task allocation problem in
parallel computing. The cost function used is a
quadratic objective function. Their problem more
closely resembles our problem but our efforts are
based on genetic and simulated annealing algorthms.

Hong and McMillin[%] have applied the cost mea
surement and error tolerance scheme based on the
hill climbing nature to the composite stock cutling
problem in an Intel IPSC/2 muiticomputer. The asyn-
chronous simulated annealing algorithm they pro-
posed is based on the spatial decomposition method.
Their experimental results show (hat the parallel
algorithm results in packing densities as almost same
as the sequential algorithm does with almost linear
speedup.

WE S MM Bl 2R RO GALF SAR Bl 2518

Woodside and Monforton 18] generalize a hew
ristic solution based on bin-packing for finding load
halanced allocations of independent tasks to mult
processors, They introduce communicating tasks nto
the algorithm which are to be allocated onfo a
bus-connecied processors and present a static
allocator which ecould bhe incorporated into an

automated compiler for distributed systems.

The remainder of this paper 1s organized as
follows. Section 2 formulates the task alocation
problem studied in this work. Sections 3 and 4
describe our genetic and annealing algorithm ap-
proaches to the given problem. In Section 5, we
compare the solution quality derived by our heuristic
algorithms against those derived by a random and a
greedy allocation algorithms, and the simulation
results of the algorithms are presented. Finally, the

conclusions and future work are given in Section 6.

2. The Task Allocation Problem

The mapping problem we study in this work is
formulated. We first define terms and notations to
be used. A parallel program can be modeled by a
weighted task graph, Gi Vi, E), in which vertices, V.
= {Ty T~ T}, denote the tasks of a parallel
program and undirected edges, B = (T, 1) | 1= 1,
j =t} represent interaction between tasks. Each
vertex of ¢ is assigned a weight w, which denotes
the computation cost of the task 7. Each edge is
assigned a weight w.(T,T}} denoting the amount of

interaction between tasks Tiand T; for 154, j = ¢

A parallel architecture i3 represented by an
undirected processor graph GV, E,} where V, =
{P;, Ps Py and E, = ((Pn,Ps} | 15 m n = p,
m-+nj. The vertices V), represent the processors of
the target multicomputer, and the edges £, indicate
the bidirectional communication links. In a parallel
systern, mapping leads to partitioning the task graph
into subgraphs allocated to the processors. Tasks

are partitioned into as many equally weighted clus-

lers s the number of processors. Fach cluster i
then assigned by a one-to—one mapping 1o a pro
cessar of the multicomputer, and so the inter

processor communication cost 1s minimized.

Given a task graph G0V, E) and a processor
graph GV, the allocation problem consists of
finding @ mapping scheme FiU, —~ V, which maps
the ¢ tasks of the graph (i to the p processors of
(rp, and mininuzes the computation and communi
cation cost. Let the set of vertices assigned to a
cluster h he ReA), ie, R(h) ={T, €V, . (T = hl
=0 =t} The computation cost lor weight wi) of

every cluster can he cxpressed as

W k) = T_Qm w; (D)

The communication cost of all the edges from a

cluster is given by

== ' R 2
on) r',em;l,sze(mu'e(T.T) (2)

An objective function which cstimates the total
parallel cxecution time including the computation and
communication cost [or 4 mapping configuration, is

defined as

OF=3XTWPY+FETCPL,) @)

WP is the computation workload of node P
that is, WPH = Max, (PY for all n, 15 n < p and
! £ h = ¢, where P! is the number of tasks of
cluster (i allocated to node P. C(PL,) is the
inter processor communication cosl (matrix) between
node n and node m, specified as C(P!,) =
Mad(PoM vy), Vi Vi € GFVY) is the pro-
cessor number in the range O to [V, -1 onto
which the task i is mapped. £ is a constant
representing {he relative importance of communi-
cation with respect to computation and the cost of
unit computation/cost of unit communication in a

machine.

3. A Genetic Algorithm Approach

Genetic algorithms simulate the survival of the
fittest among Individuals in nature over generations
for solving a problem. Each generation consists of a
population of individuals, a set of character strings.
Each individual represents a point in the search
space and & possible solution. We use a genctic
algorithm based approach with a distributed popu-
lation model {11,12] which has the advantage of
implicit parallelism and reduces the possibility of
premature convergence. The population model In-
volves partitioning the population into individual sub
populations. Isolated evolution with interaction a
mong subpopulations takes place over successive
generations. Our genetic mapping algorithm consists
of four phases~initialization, reproduction, cross-

over, and mutation.

3.1 Representation

In the coding scheme, the set of tasks (a finite -
length string) is represented by a task vector which
is a sequence of integers ranging from 0 to & - J.
A permuiation of the sequence defines an as-
signment of the tasks onto the nodes. A task entry
D; found at position i of a vector represents an
assignment of task Dy onto node X., where m = |
modulus n, and n is the number of nodes. As an
example, if we have a vector {1, 10, 2, 5 8 4, 6, 9,
7, 3, 0}, assuming that we have four processors, the
vector leads to the following assignment: Node 0
contains tasks: D, Dy and D, Node 1 contains
tasks : Dy, Di, and D;: Node 2 contains tasks: I
Dy, and Dy Node 3 contains tasks: Ds and De

3.2 Initiafization

The first step of the algorithm is to initialize the
population of individuals. In the initialization phase, a
set of random permutations of the task vector is
uniformly generated, Fach permutation represents a
possible allocation of the tasks onto the nodes.

A near-optimal allocation is generated by repetitively

modibving the permutations. A permutafion mains,
Py <1< n-1 0= ;=< d-1}1is crealed
Bvery row of P, P, (0 < i = n 1} is a complete
permutation of all tasks D, (0 = j = d [). We
define the mapping function, £, ©) —~ X for any
given row of P, P, (0 £ 7 < n - I})as fflDJ - J
mod n, where j is the index in row F; of task I,
(0 =k <d- 1)

{Table 1> The permutation matrix

1 2 3 °o b 7T 8 9 10
0 2 5 4 6 9 7 3 0
2 4 10 6 3 0 9 t

5 8 3 0 2 9 &6 1 7 10

]
v o)
-]
=
)
=
o)
-
Ia

If n - 4 row Py implies that tasks 0 through 10
are mapped to nodes 2,0, 2, 1, 1, 3, 2 0,0, 3, 1,

respectively.

3.3 Reproduction

The reproduction phase selects a new set of task
allocations for use in the next generation using the
OF. The selection process is based on the goodness/
fitness value of the current permutations. The allo
cation with a higher value of goodness has a higher
probahility of producing one or more offspring in the
next generation. Upon the completion of each repro-
duction phase, the old, poor allocations are replaced
by the birth of the new, good permutations.

3.4 Crossover

The crossover phase represents the ¢ross
tortilization of permutations similar o the composi
tion of genes from both parents in a hbirth. It con-
sists of a position-wise exchange of values between
cach randomly paired permutations. Two-point cross:
over is performed on a pair of individuals by swap~
ping contiguous segments of genes. tThe segment
boundaries are randomly selected and are the same
in both parents. Two random numbers are chosen

and serve as the bounds for the position-wise ex-

change Fach lask of the first permutanion which
falls within the determined bounds is swapped with
the corresponding task of the second permutation,

and likewise the sccond permutation with the first.

35 Mutation

The mutation phase is incorporated into the algo-
rithm to prevent premature local convergence in the
population, The mutation rate is designated by the
probability of mutation, During this phase, a per-
mutation is randomly modified with a low pro
bability; a pair of tasks in an allocation ts position-

wise swapped.

3.6 Termination Condition

The termination/convergence condifion is reached
if all permutations are identical or if the number of
generations 1s greater than a predetermined maxi
mum generation limit. In our experimentation, the
number of generations is obtained for five different
runs and the maximum hmit was set at 1500, The
number of generations i implementation-dependent
and must be specified carcfully to obtain the best

solution guality.

We now combine all the processes above to form

the complete gcnetia‘, algorithm for mapping.

Algorithm 1.

1. Inmitialization Randomly generate inifial population of
individuals,

2 Repect steps 3-7 until the algorithm terminates

3 Fuvaluate goodness of individuals in population.

4. Reproduction - Select the string with the highest goodness

value

a0 Crossover Pk o sirings and posilion wise swop with
probabiiity of crossover

o Alwation Randomiy modiy the strng with a probability of
muitation

" Preserve the best solution so fur

~i

4, A Simulated Annealing Approach

Our simulated annealing solution to the task
allocation problem is based on the SA algorithm [13]
that consists of annealing steps for producing the

TR el ST AT T

best mapping solwtion. The SA algorithm used in
this work that consists of annealing steps for pro
ducing the best mapping solution. The SA algo

ithm used in this work proceeds as follows.

Algorithm 2.

LoSet an il femperature Tem © Tem

2o Ser an initiad configurtion S - Sa

L Caleulate the cost value C - caleulate, (1S)
L While > (frozen’ termiration conditioni do
. Determune the verfices V. to be moved,

. Whele (not yer in equilibrium) do

~ (renerate new configuration 87 - perturbcs);
& Caleulate new cost value C7 = caleulate (1870
b Caleulate the cost difference 4dC = -
W de <ol

Th then § - aeeeptd S™) update configuration;

CACTE) andomt0.1);

AT Ko

O

-

12 else S = aeeepl(S) with ¢ e
13 End ke Nwith step G

M. Redwce temperature Termy
15 End while (with step 41,

In the algorithm. a move {perturbation) is accom
plished by a random remapping of a randomly cho-
sen configuration. A remapping that leads to a lower
or identical cost is always accepted, whereas in:
crease in the cost is only allowed with the prob-
ability e ™™ known as the Metropolis criterion.
Acceptance probabilities of moves are controlled by
a temperature Tem. The algorithm uses Eq. (3) as

the cost function.

In the SA implementation, the cooling schedule
policy must be specified carefully. The initial con-
figurations are obtained by a random zllocation of
tasks amang processors. The initial temperature is
then determined such that the acceptance probability
of uphill moves in the cost function is initially 0.9.
Equilibrium is detected by sampling cost dynamically
as the assignment is perturbed. The equilibrium at a
temperature means the probability distribution of
configurations has reached a steady state. Tem-
perature is decreased by the cooling schedule in Eq.
(4), making small changes in temperature. An expo-
nential cooling schedule is used because the use of
logarithmic cooling schedules requires too much com-

putation time.

Tem(i+1} - (= Tem(i) 4

where <] and commonly very close to 1. The
constant was set to 098 in our implementation.
Tem(i) is the current temperature. that will he
decreased. Eq. (4) determines the next temperature
as a fraction C of the present one. SA is considered
converged if one of the following two conditions is
satisfied (1} if the number of accepted moves is
zero, or (2) if no further progress in the mapping
quality is made for a given number of annealing

steps.

5, Experimental Resulis

We implemented and tested Algorithms 1 and 2
discussed in Sections 3 and 4 on random (task
graphs, respectivelv. The results of ow mapping
algonthms are favorably compared against those of
a random and a greedy algonithms. The random
algorithrn assigns each task cluster on a randomly
selected processor with no regard to computation
times or communication requirements, The greedy
algorithm is based on a best fit mapping stratepy,
where the clusters are listed in order of increasing
cost, @ = ¢ = £ ¢ and then the algorithm
finds the smallest { such that ¢ £ ¢, where ¢ is
the cost of the cluster set to be assigned. All these
algonithms were implemented in € on a Spare
workstation. Our experimental findings from a simu
lation study of the algorithms are reported. The total
value of OF of Eq. (3) is used to assess the quality
of the solutions produced by the algorithms. The
performance measures are the solution quality and

the CPU time for algorithm execution.

Vertices V, of task graphs are randomly generated
and mapped into 16-node hypercubes. The compu-
tation and communication costs are generated
randomly. Each vertex (T, I £ { £ ¢} has an inte-
ger weight ranging from 1 to 10. 7; is connected to
randomly selected vertices that will he in the range
1 to 16. Ldges E; are weighted randomly with

wteger valucw between oand 1w Throughout the
sirmadations, the following GA parameter values were
used: A rotai population size = 3X). the crossover
probability = 0.85, the mutation probabihty = (.02,
and the maximum gencration it 150, The
parameter setting for SA was specified In the pre-

vious section.

{Table 2> Comparison of four algorithms with
different task graphs

V., E) | Kandom (rreedy Genetic | Annealing
(200,10000 7677 7455 6785 6811
(300,20000 14450 14450 12847 12439
(400,400 38052 X714 374 31487

{Tahle 3> Comparison of four algorithms with
different task graphs ‘

—
i

(Vy, E) | Random i Greedy | Genetic |Annealing

(406010001 9438 A5 16 8594

(400,2000) 17808 17549 16067 16310

(4050,4000) 38052 36714 31754 31487

<Table 2> compares the cost of the solutions de
rived by the random, greedy, genetic, and annealing
algorithms for several different problem instances.
The figures here are the average values of five
different runs. The comparison results in <Table 2>
represents the best solutions obtained by the four
algorithms in these multiple runs. <Table 3> also
compares the cost of the solutions derived by the
four algerithms for different problem instances.
However, the same value (400) of Vi was used for

each problem with different E.

{Table 4> Time (in sec.) of four gigorithms with
different task graphs

(v, EJ Random | Greedy | Genetic | Amealing
(400, 10000 42 o 144 187
(400,2000 74 6l | 268 314
(400,4000) 82 8 | 43 365

<Table 4> shows the cxecution time taken. The

presented tesults show that the random and greedy

Jporithme cwld osolutons of lowoer quality than
those of the genelic and annealing heuristics, but
they are laster at the expense of solution quality.
That is, faster techniques produced lower quality
solutions. For instance, in the (400, 4000) problem,
the genetic approach gave the best result, improving
by about 19% over the random and 15% over the
greedv. The results indicate that the genetic algo-
rithm enjovs the property of using the population
and #s implicit parallelism, and thus this will enable
the GA approach to get better performance. It
should be noted that in this experiment, the genetic
and annealing algorithms were not optimized for
time, and aimed for the mapping solution quality. In
optimization problems, the performance measure of

the solution quality s of greater importance.

G=200

T st
G=21108

Loz of Coas:

L= iy

9,4 L e S

G= e

005 001 o016 £02 0026 03 G038 101 D6 495
Hutation Rate

(Fig. 1)

(Fig 1) demonstrates the relatively negligible ef-
fects of mutation on the allocation derived for (400,
4000}, The cost for different generations. The values
of mutation rates used were in the range 0.005-0.05.
The results indicate that lower cost of the GA is
achieved with the larger number of generations and
the impact of varving the mutation rate is minimai,

For additional experimental results, see [14l.

The performance obtained using GA and SA ap-
proaches i3 comparable. From Table 2, 3, and 4, we
can see that the solution quality by the genetic
method are slightly better in smaller problems but
the annealing solution is better in a larger problem.

Genetic algonthms search from a population of

point- while only o single point in simulated an

nedling ix perturbed, The time consuming evaluation
of the objection function can he done in pargliel for
d whole population. as can the reproduction of
offspring meividua! solutions. The implicil parallelism
of genetic search tends to evolve good solutions in a
shorter time. The genetic search time can be re-
duced by parallelizing the sequential GA on mul

tiprocessor systems. It has been shown that, in prior
studiesf11] near linear speedups can be observed by
an asynchroncus purallel GA. Tn distributed-memory
multicomputers, the scalabihty of SA is lower than

that of GA due 1o imherent global synchronization

involved,
7
i
fil
\ * :Ganatic AGorhm
L1 llll; o Anneaking AQonathm
13
o
g
g Lf\
a5k Xk
\\‘\1\
o ‘\%
485 e Ry
o i a0 w0 w0 @ 1m0 fwo ie 1800
Numzmr of £F Cvaluation
(Fig. 2)

(Figure 2) illustrates the behavior of the genetic
and annealing algorithms. The cost of the sclutions
is plotted against the number of OF evaluations.
Each of the algorithms approches a suboptimal sola-
tion when the fluctuating cost is stabilized. The
genetic approach gives greater initial improvements
than the annealing one. The annealing runs tend to
converge late i comparison with the genetic. The
results show that the genetic approach makes initial
improvements larger and the progress of annealing

is consistent with the larger number of evaluations,

8. Conclusions

We have studied the task allocation problem (an

NP-complete problem) in parallel computing. We have

presented two heuristic solutions based on genctic
algorithms and simulated anneating. We evaluated
the performance of owr allocation algorithms by orders
of magnitude, and compared the quality of solutions
derived by the ramdom, greedy, genetic, and an

nealing algorithms. Experimental results from a
simulation study of the algorithms were obtained.
The solution gquality derived by the genetic or
anncaling algorithm was found to be superior to
those of either the random or the greedv. The
performance obtaned using the genetic or annealing
approaches 1s comparable. The genetic approach mekes
initial improvements greater and the annealing pro

cess is consistent with the larger number of iter

ations. In our ongoing research, we are developing a
hybrid algorithm which combines the benefit of gen-
etic and annealing algorithms. Related research works
along with this direction can be found in [15, 16].

References

[1] S. H. Bokhari, "On the Mapping Problem,” [EEE
Trans. on Computers, Vol.C-30, No.3, pp.207-214,
1981,

[2] S. W. Bollinger and S. F. Midkiff, “Processor
and Link Assignment in Multicomputers Using
Simulated Annealing,” Proc. Int. Conf. Parallel
Processing, pp.1-7, Aug. 1988,

[3} J. P. Cohoors, W. N. Martin, and D. S. Richards,
"A Multi-population Genetic Algorithm for Solving
the K-Partition Problem on Hypercubes,” Proc,
Int. Conf. Genetic Algorithms(ICGA), pp.244-249,
Jul 1991

[4) R. V. Driessche and R. Plessens, "Load Bal-
ancing with Genetic Algorithms,” Proc. Conf.
Parallel Problem Solving from Nature, North-
Holland, Amsterdam, pp.341-350, 1996.

[5] X. Du and F.J. Maryanski, “Data Allocation in a
Dynamically Reconfigurable Environment,” Proc.
Int. Conf. Data Engineering, pp.74-81, 1998,

(6] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-

T e N I H Loy ey mnias ot ey
ol e AWt Frooman o and D i

Francisco, CA., 1979

(71 I K. Goldberg, Genetic algorithims in Search,
Optimization and Machine Leaming, Addison Wes-
icy. Heading, MA., 1989,

(8] J. H. Holland, Adaptation In Natural and Ar
tificial Systems, University of Michigan Press,
(Also, MIT Press), 1975 & 1992

19] C.E. Hong and B. M. McMillin, "Relaxing
Synchronization in Distributed Simulated An
nealing,” TEEE Trans. Parallel & Distrib. Svs-
tems, Vol6, No.2, pp.189-195, 1995,

110} S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi,
"Optimization by Simulated Annealing,” Science,
Vol.220, ppb71-680, May, 1935

1117 8-V, Lee and] K. Aggarwal, "A Mapping
Strategy for Parallel Processing,” TEEE Trans.
Computers, Vol.C 36, Nod, pp.433-42, 1987,

1121 N. Mansour and G.C. Fox, "A Hyhnd Genetic
Algorithm for Task Allocation in Multi-
computers,” Proc. ICGA, pp.466-473, Jul. 1991

[13] K. Park. O. Frieder, and A. Sood, “A Parallel
Solution for the Multiprocessor Document Allo-
cation Problem” Proc. Int. Conf. Parallel Pro-
cessing, Vol3, pp.119-122, 1994,

[14] K. Park, O. Frieder and A. Sood, “Data Allo-
ration in Distributed Memory Svstems: A Genetic
Approach,” Proc. Parallel & Distributed Pro-
cessing Techniques and Applications, Vol.3,
pp. 1190 1201, 1996

O LTT R AL Ruo ST Eheg wEE AT DAL Lial

1

Ko Pk YA Comparative Study of Mapping
Heuristics,” ACM SCS, High Performunce Com
puting, VoL, pp.278 283, Apr. 199,

[16] K. Park and C.-E. Hong. "Performance of
Heuristic Task Allocation Algorithms,” Journal
Natural Science, CUK, Vol18, pp.145-165, 1997,

171 J. Xu and K. Hwang, "Mapping Rule-Based
Systems onto Multicomputers Using Simulated
Annealing,” J. Parallel & Distributed Computing,
Academic Press, Vol.13, pp.442-4565, 1991,

[18] C. M. Woodside and G. C. Monforton, “Fast

Allocation of Processes in Distributed and Par-

allel Systems,” IEEE Trans. PADS, Vol4, No2,

pp.164-174, 1993.

o 2 o
¢-mail ¢ kpark@eos.cuk.ackr
19803 Sl AApATE 7
Feletal Z{1(3HAh
198351 et AN A
A abatebd (o] B A
1990 % New Jersey Institute
of Technology, #AFE4
BEH(H FE A E A AD
19944 £ (George Mason University 48 38375
B} 3 ghatAl)
19964 ~ @A 7HER e}
wa ol g E A e, HREALE

™
= g AN Y 5

=

b

=

m

> ol
iz

el

> —r—
PN

=]

ol

