• 제목/요약/키워드: Gravity Pressure Reactor

검색결과 17건 처리시간 0.031초

중력식 습식산화반응기 내 산화제 공급부의 유동특성에 관한 연구 (A Study on the Flow Characteristics of an Oxidizer Feed Section for Wet-air Oxidation in Gravity Pressure Reactor)

  • 이홍철;황인주
    • 한국유체기계학회 논문집
    • /
    • 제19권3호
    • /
    • pp.10-13
    • /
    • 2016
  • The wet-air oxidation in gravity pressure reactor is effective for organic waste treatment with energy saving under high pressure and high temperature. But its oxidation control is difficulty because its multi-phase flow characteristics is very complicated. The flow characteristics of an oxidizer feed section in the gravity pressure reactor were investigated using numerical method which are verified by comparison with experimental results. In this study, the results showed that the flow rate of oxidizer have an effect on the generation of bubble around feed section.

복합안전주입탱크(Hybrid SIT) 설계개념 (Design Concept of Hybrid SIT)

  • 권태순;어동진;김기환
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.104-108
    • /
    • 2014
  • The recent Fukushima nuclear power plant accidents shows that the core make up at high RCS pressure condition is very important to prevent core melting. The core make up flow at high pressure condition should be driven by gravity force or passive forces because the AC-powered safety features are not available during a Station Black Out (SBO) accident. The reactor Coolant System (RCS) mass inventory is continuously decreased by releasing steam through the pressurizer safety valves after reactor trip during a SBO accident. The core will be melted down within 2~3 hours without core make up action by active or passive mode. In the new design concept of a Hybrid Safety Injection Tank (Hybrid SIT) both for low and high RCS pressure conditions, the low pressure nitrogen gas serves as a charging pressure for a LBLOCA injection mode, while the PZR high pressure steam provides an equalizing pressure for a high pressure injection mode such as a SBO accident. After the pressure equalizing process by battery driven initiation valve at a high pressure SBO condition, the Hybrid SIT injection water will be passively injected into the reactor downcomer by gravity head. The SBO simulation by MARS code show that the core makeup injection flow through the Hybrid SIT continued up to the SIT empty condition, and the core heatup is delayed as much.

스마트 제어봉집합체의 낙하시간 평가 (Drop Time Evaluation for SMART Control Rod Assembly)

  • 김경련;장기종;박진석;이원재
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.25-28
    • /
    • 2011
  • The control rod assemblies do freely fall into the reactor core by the gravity from the control rod drive mechanism. In order to achieve a rapid shutdown and control the reactor power, it is required to insert control rod assemblies as soon as possible. In this paper, we evaluated the drop time and flow characteristics caused around guide tube for SMART(System-integrated modular advanced reactor) control rod assembly. Numerical analyses are carried out with FLUENT program of computational fluid dynamics. This study results show that the drop time of the control rod assembly in the operating condition of SMART is more 20 percent rapidly than the drop time of the room temperature and ambient atmosphere condition.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

습식산화반응열을 고려한 GPV 내 열적 특성 해석 (A Study on the Thermal Characteristics in the GPV with Heat Release by Wet Oxidation)

  • 서현석;이홍철;양준승;안재환;황인주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.392-397
    • /
    • 2009
  • Gravity pressure vessels find their use in the wet oxidation of sewage sludge, which can be defined as the oxidation of organic and inorganic substances in an aqueous solution or suspension by means of oxygen or air at elevated pressures and temperatures. Numerical analyses were carried out for investigating the flow characteristics and wet air oxidation in the reaction vessel with various conditions such as supply oxidation and the supply positions of oxidation, etc. Wet air oxidation is promoted in the vicinity of bottom in the reactor with increase of oxygen supply. Also, it is the best condition to the oxidation supply position of 150 m and oxidation flow of 0.06 kg/s in the GPV reactor as the remnant of sludge and creation of organic acids.

  • PDF

연구용 원자로 이차정지구동장치 수력시스템의 내진검증 (Seismic Qualification Test for SSDM Hydraulic System of Research Reactor)

  • 김상헌;김경호;선종오;조영갑;정택형;김정현;이관희
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.23-29
    • /
    • 2016
  • The Second Shutdown Drive Mechanism (SSDM) provides an alternate and independent means of reactor shutdown. The Second Shutdown Rods (SSRs) of SSDMs are poised at the top of the core by the hydraulic force driven from a hydraulic system during normal operation. The rods drop by gravity when a trip is commended by a Reactor Protection System, Alternate Protection System, Automatic Seismic Trip System or operator by means of power off solenoid valves of hydraulic system. This paper describes the test results of seismic qualification of a prototype SSDM hydraulic system to demonstrate that its structural integrity and operability (functionality) are maintained during and after seismic excitations, that is, an adequacy of the SSDM design. From the results, this paper shows that the SSDM hydraulic system satisfies all its design requirements without any malfunctions during and after seismic excitations.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.

습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사 (Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation)

  • 박권우;서태완;이홍철;황인주
    • Korean Chemical Engineering Research
    • /
    • 제54권2호
    • /
    • pp.248-254
    • /
    • 2016
  • 오늘날 폐수처리는 슬러지의 증가와 환경규제의 이유로 매우 중요해지고 있다. 슬러지처리는 폐수처리플랜트에 있어서 운영비의 50%를 차지하므로 슬러지 분해에 있어서 경제성 있는 방법이 대두되고 있다. 습식산화 반응은 폐수의 유기물을 효과적으로 제거해주고 슬러지 분해 뿐만 아니라 바이오연료의 전구체로 쓰일 수 있는 휘발성 유기산이 부산물로도 나온다. 습식산화 반응은 고온 고압의 높은 조건의 단점이 존재하지만 중력식 반응기를 통한 수두압으로 운영비를 줄일 수 있다. 본 연구에서는 상용프로그램인 Aspen Plus를 이용하여 아임계 조건에서 PSRK 상태방정식을 이용하여 공정모사 하였다. 중력식 반응기의 길이, 산화제 종류, 슬러지 유량과 산화제 주입 위치에 따라 사례 연구를 해보았으며 중력식 반응기 1000 m, 유량이 2 ton/h일 때에 유기물의 전환률은 92.02%, 유기산 효율은 0.17 g/g이였다.

MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

  • Kumar, Mukesh;Nayak, A.K.;Jain, V;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.605-612
    • /
    • 2013
  • Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 $m^3$, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.

비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법 (A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.