• Title/Summary/Keyword: Graphenes

Search Result 38, Processing Time 0.031 seconds

Preparation, Characterization, and Catalytic Applications of Graphene-palladium Nanocomposites

  • Hong, Yeong-Guk;Yu, Se-Hui;Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.262-262
    • /
    • 2012
  • Modifications of graphenes have been studied for catalytic applications due to their advantages such as high surface area, conductivity and thermal stability. In this research, individual graphene oxide (GO) sheets were exfoliated from graphite using Hummers and Offeman method. Pd nano-particles were deposited on the GO surface using Pd2+ ion exchange where hydroxyl groups on the GO act as nucleation sites of Pd nanoparticles and their dispersions. The thermal treatments of the Pd-GO in H2 flow produced Pd-Graphene nanocomposites. Their catalytic performances in Sonogashira reaction were investigated. Morphological and chemical structures of the GO, Pd-GO, and Pd-Graphene were investigated using FT-IR, XRD, TEM, STEM, and XPS. The catalytic performances have been investigated using microwave reactor.

  • PDF

Percolative Electrical Conductivity of Platy Alumina/Few-layer Graphene Multilayered Composites

  • Choi, Ki-Beom;Kim, Jong-Young;Lee, Sung-Min;Lee, Kyu-Hyoung;Yoon, Dae Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.257-260
    • /
    • 2017
  • In this work, we present a facile one-pot synthesis of a multilayer-structured platy alumina/few-layer graphene nanocomposite by planetary milling and hot pressing. The sintered composites have electrical conductivity exhibiting percolation behavior (threshold ~ 0.75 vol.%), which is much lower than graphene oxide/ceramic composites (> 3.0 vol.%). The conductivity data are well-described by the percolation theory, and the fitted exponent values are estimated to be 1.65 and 0.93 for t and q, respectively. The t and q values show conduction mechanisms intermediate between 2D- and 3D, which originates from quantum tunneling between nearest neighbored graphenes.

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

Mechanical Properties of Cement Paste with Nanomateirals (나노재료를 혼입한 시멘트 페이스트의 역학적 특성)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.193-194
    • /
    • 2020
  • Recently, as the use of high-performance concrete has become common, various problems related to high-performance concrete have become an issue. Among them, self-shrinkage of cement paste due to low water cement ratio is known to cause problems in the volume stability of concrete. To improve this, studies related to the mixing technology of cement-based materials and nano materials have been actively conducted. Looking at the results of prior research related to nano material mixing technology, generally, research results have been reported in which nano materials are incorporated into cement-based materials to improve material properties1). Among them, it was shown that the mechanical performance and various types of functionality of the cement composite are expressed. Among nano materials, carbon nanotubes (hereinafter referred to as CNTs) and graphenes are used in a mixture with cement-based materials. Accordingly, this study intends to compare the mechanical properties by incorporating various CNTs and graphene into cement paste.

  • PDF

Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food

  • Lim, Min-Cheol;Kim, Young-Rok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1505-1516
    • /
    • 2016
  • The detection of food pathogens is an important aspect of food safety. A range of detection systems and new analytical materials have been developed to achieve fast, sensitive, and accurate monitoring of target pathogens. In this review, we summarize the characteristics of selected nanomaterials and their applications in food, and place focus on the monitoring of biological and chemical contaminants in food. The unique optical and electrical properties of nanomaterials, such as gold nanoparticles, nanorods, quantum dots, carbon nanotubes, graphenes, nanopores, and polydiacetylene nanovesicles, are closely associated with their dimensions, which are comparable in scale to those of targeted biomolecules. Furthermore, their optical and electrical properties are highly dependent on local environments, which make them promising materials for sensor development. The specificity and selectivity of analytical nanomaterials for target contaminants can be achieved by combining them with various biological entities, such as antibodies, oligonucleotides, aptamers, membrane proteins, and biological ligands. Examples of nanomaterial-based analytical systems are presented together with their limitations and associated developmental issues.

Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method

  • Dubey, Prashant;Choi, Sang-Kyu;Kim, Bawl;Lee, Cheol-Jin
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.99-108
    • /
    • 2012
  • The sol-gel technique has been studied to fabricate a homogeneous Fe-Mo/MgO catalyst. Ambient effects (air, Ar, and $H_2$) on thermal decomposition of the citrate precursor have been systematically investigated to fabricate an Fe-Mo/MgO catalyst. Severe agglomeration of metal catalyst was observed under thermal decomposition of citrate precursor in air atmosphere. Ar/$H_2$ atmosphere effectively restricted agglomeration of bimetallic catalyst and formation of highly-dispersed Fe-Mo/MgO catalyst with high specific surface-area due to the formation of Fe-Mo nanoclusters within MgO support. High-quality thin-multiwalled carbon nanotubes (t-MWCNTs) with uniform diameters were achieved on a large scale by catalytic decomposition of methane over Fe-Mo/MgO catalyst prepared under Ar-atmosphere. The produced t-MWCNTs had outer diameters in the range of 4-8 nm (average diameter ~6.6 nm) and wall numbers in the range of 4-7 graphenes. The as-synthesized t-MWCNTs showed product yields over 450% relative to the utilized Fe-Mo/MgO catalyst, and indicated a purity of about 85%.

Growth Properties of Carbon Nanowall According to the Substrate Angle (기판 각도에 따른 탄소나노월의 성장 특성)

  • Kim, Sung Yun;Joung, Yeun-Ho;Han, Jae Chan;Choi, Won Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.686-689
    • /
    • 2013
  • The carbon nanowall (CNW) is a carbon-based nanomaterials and it was constructed with vertical structure graphenes and it has the highest surface density among carbon-based nanostructures. In this study, we have checked the growth properties of CNW according to the substrate angle. Microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow CNW on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. And, we have changed the substrate angle from $0^{\circ}$ to $90^{\circ}$ in steps of $30^{\circ}$. The planar and vertical conditions of the grown CNWs according to the substrate angle were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). In case of the growth angle increases, our experimental results showed that the length of the CNW was shortened and the content of carbon component was decreased.

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

Size and Density of Graphene Domains Grown with Different Annealing Times

  • Jung, Da Hee;Kang, Cheong;Nam, Ji Eun;Kim, Jin-Seok;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3312-3316
    • /
    • 2013
  • Single crystals of hexagonal graphenes were successfully grown on Cu foils using the atmospheric pressure chemical vapor deposition (CVD) method. We investigated the effects of reaction parameters, such as the growth temperature and annealing time, on the size, coverage, and density of graphene domains grown over Cu foil. The mean size of the graphene domains increased significantly with increases in both the growth temperature and annealing time, and similar phenomena were observed in graphene domains grown by low pressure CVD over Cu foil. From the comparison of micro Raman spectroscopy in the graphene films grown with different annealing times, we found that the nucleation and growth of the domains were strongly dependent on the annealing time and growth temperature. Therefore, we confirmed that when reaction time was same, the number of layers and the degree of defects in the synthesized graphene films both decreased as the annealing time increased.

Plasma-assisted nitrogen doping on CVD-graphenes

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.278.2-278.2
    • /
    • 2013
  • 그래핀은 우수한 전기적, 기계적, 광학적 특성들로 인하여 전자소자, 센서, 에너지 재료 등으로의 응용이 가능하다고 알려진 단 원자층의 탄소나노재료이다. 특히 그래핀을 전자소자로 응용하기 위해서는 캐리어 농도, 전하 이동도, 밴드갭 등의 전기적 특성을 향상시키거나 제어하는 것이 요구되며, 에너지 소재로의 응용을 위해서는 높은 전기전도도와 함께 기능화를 통한 촉매작용을 부여하여 효율을 향상시키는 것이 요구된다. 일반적으로 화학적 도핑은 그래핀의 전기적 특성을 제어하는 효율적인 방법으로 알려져 있다. 화학적 도핑의 방법으로 질소, 수소, 산소 등 다양한 이종원소를 열처리 또는 플라즈마 처리함으로써 그래핀을 구성하는 탄소원자를 이종원자로 치환하거나 흡착시켜 기능화 처리된 그래핀을 얻는 방법들이 제시되었다. 이중 플라즈마를 이용한 도핑방법은 저온에서 처리가 가능하고, 처리시간, 공정압력, 인가전압 등 플라즈마 변수를 변경하여 도핑정도를 비교적 수월하게 제어할 수 있다는 장점을 가지고 있다. 본 연구에서는 열화학기상증착법으로 합성된 그래핀을 직류 플라즈마로 처리함으로써 효율적인질소도핑 조건을 도출하고자 하였다. 그래핀의 합성은 200 nm 두께의 니켈 박막이 증착된 몰리브덴 호일을 사용하였으며, 원료가스로는 메탄을 사용하였다. 그래핀의 질소 도핑은 평행 평판형 직류 플라즈마 장치를 이용하여 암모니아($NH_3$) 플라즈마로 처리하였으며, 플라즈마 파워와 처리시간을 변수로 최적의 도핑조건 도출 및 도핑 정도를 제어하였다. 그래핀의 질소 도핑 정도는 라만 스펙트럼의 G밴드의 위치와 반치폭(Full width at half maximum; FWHM)의 변화를 통해 확인하였다. NH3 플라즈마 처리 후 G밴드의 위치가 장파장 방향으로 이동하며, 반치폭은 감소하는 것을 통해 그래핀의 질소도핑을 확인하였다.

  • PDF