Browse > Article
http://dx.doi.org/10.4014/jmb.1605.05071

Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food  

Lim, Min-Cheol (Graduate School of Biotechnology & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University)
Kim, Young-Rok (Graduate School of Biotechnology & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.9, 2016 , pp. 1505-1516 More about this Journal
Abstract
The detection of food pathogens is an important aspect of food safety. A range of detection systems and new analytical materials have been developed to achieve fast, sensitive, and accurate monitoring of target pathogens. In this review, we summarize the characteristics of selected nanomaterials and their applications in food, and place focus on the monitoring of biological and chemical contaminants in food. The unique optical and electrical properties of nanomaterials, such as gold nanoparticles, nanorods, quantum dots, carbon nanotubes, graphenes, nanopores, and polydiacetylene nanovesicles, are closely associated with their dimensions, which are comparable in scale to those of targeted biomolecules. Furthermore, their optical and electrical properties are highly dependent on local environments, which make them promising materials for sensor development. The specificity and selectivity of analytical nanomaterials for target contaminants can be achieved by combining them with various biological entities, such as antibodies, oligonucleotides, aptamers, membrane proteins, and biological ligands. Examples of nanomaterial-based analytical systems are presented together with their limitations and associated developmental issues.
Keywords
Analytical nanomaterials; biosensor; food safety; pathogenic bacteria; food contaminants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao Q, Zhao H, He Y, Li X, Zeng L, Ding N, et al. 2010. Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe. Biosens. Bioelectron. 25: 2680-2685.   DOI
2 Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW. 1999. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77: 3227-3233.   DOI
3 Berman A, Ahn DJ, Lio A, Salmeron M. 1995. Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organic-inorganic interface. Science 269: 515.   DOI
4 Bruno JG, Phillips T, Carrillo MP, Crowell R. 2009. Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J. Fluoresc. 19: 427-435.   DOI
5 Chan KY, Ye WW, Zhang Y, Xiao LD, Leung PHM, Li Y, Yang M. 2013. Ultrasensitive detection of E. coli O157: H7 with biofunctional magnetic bead concentration via nanoporous membrane-based electrochemical immunosensor. Biosens. Bioelectron. 41: 532-537.   DOI
6 Chik H, Liang J, Cloutier SG, Kouklin N, Xu JM. 2004. Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl. Phys. Lett. 84: 3376-3378.   DOI
7 Chu H, Huang Y, Zhao Y. 2008. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Appl. Spectrosc. 62: 922-931.   DOI
8 Cracknell JA, Japrung D, Bayley H. 2013. Translocating kilobase RNA through the staphylococcal α-hemolysin nanopore. Nano Lett. 13: 2500-2505.   DOI
9 Crouse D, Lo Y-H, Miller AE, Crouse M. 2000. Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Appl. Phys. Lett. 76: 49-51.   DOI
10 Eldin TAS, Elshoky HA, Ali MA. 2014. Nanobiosensor based on gold nanoparticles probe for aflatoxin B1 detection in food. Int. J. Curr. Microbiol. Appl. Sci. 3: 219-230.
11 Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al. 1997. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101: 9463-9475.   DOI
12 Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. 2012. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 84: 6220-6224.   DOI
13 dos Santos Pires AC, Soares NdFF, da Silva LHM, da Silva MdCH, De Almeida MV, Le Hyaric M, et al. 2011. A colorimetric biosensor for the detection of foodborne bacteria. Sens. Actuators B Chem. 153: 17-23.   DOI
14 Furneaux RC, Rigby WR, Davidson AP. 1989. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 337: 147-149.   DOI
15 Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. 1997. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277: 1078-1081.   DOI
16 Frey NA, Peng S, Cheng K, Sun S. 2009. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38: 2532-2542.   DOI
17 Fu J, Park B, Siragusa G, Jones L, Tripp R, Zhao Y, Cho Y-J. 2008. An Au/Si hetero-nanorod-based biosensor for Salmonella detection. Nanotechnology 19: 155502.   DOI
18 Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, et al. 2008. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92: 151911.   DOI
19 Huang Z, Meng G, Huang Q, Chen B, Zhu C, Zhang Z. 2013. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J. Raman Spectrosc. 44: 240-246.   DOI
20 Kalogianni DP, Koraki T, Christopoulos TK, Ioannou PC. 2006. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosens. Bioelectron. 21: 1069-1076.   DOI
21 Kim G-Y, Son A. 2010. Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157: H7 quantification. Anal. Chim. Acta 677: 90-96.   DOI
22 Jana NR, Gearheart L, Murphy CJ. 2001. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17: 6782-6786.   DOI
23 Joung C-K, Kim H-N, Lim M-C, Jeon T-J, Kim H-Y, Kim Y-R. 2013. A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens. Bioelectron. 44: 210-215.   DOI
24 Jung S-H, Jang H, Lim M-C, Kim J-H, Shin K-S, Kim SM, et al. 2015. Chromatic biosensor for detection of phosphinothricin acetyltransferase (PAT) using polydiacetylene vesicles encapsulated within automatically generated immuno-hydrogel beads. Anal. Chem. 87: 2072-2078.   DOI
25 Kim J-M, Lee YB, Yang DH, Lee J-S, Lee GS, Ahn DJ. 2005. A polydiacetylene-based fluorescent sensor chip. J. Am. Chem. Soc. 127: 17580-17581.   DOI
26 Kuang H, Chen W, Yan W, Xu L, Zhu Y, Liu L, et al. 2011. Crown ether assembly of gold nanoparticles: melamine sensor. Biosens. Bioelectron. 26: 2032-2037.   DOI
27 Kumar N, Seth R, Kumar H. 2013. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Anal. Biochem. 456: 43-49.   DOI
28 Li H, Guo J, Ping H, Liu L, Zhang M, Guan F, et al. 2011. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Talanta 87: 93-99.   DOI
29 Lee IS, Lee N, Park J, Kim BH, Yi Y-W, Kim T, et al. 2006. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 128: 10658-10659.   DOI
30 Leverette CL, Villa-Aleman E, Jokela S, Zhang Z, Liu Y, Zhao Y, Smith SA. 2009. Trace detection and differentiation of uranyl (VI) ion cast films utilizing aligned Ag nanorod SERS substrates. Vibr. Spectrosc. 50: 143-151.   DOI
31 Li F, Zhang L, Metzger RM. 1998. On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10: 2470-2480.   DOI
32 Li L, Li B, Cheng D, Mao L. 2010. Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem. 122: 895-900.   DOI
33 Li S, Pedano ML, Chang S-H, Mirkin CA, Schatz GC. 2010. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett. 10: 1722-1727.   DOI
34 Liao J-Y, Li H. 2010. Lateral flow immunodipstick for visual detection of aflatoxin B1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Mikrochim. Acta 171: 289-295.   DOI
35 Lim M-C, Shin Y-J, Jeon T-J, Kim H-Y, Kim Y-R. 2011. Microbead-assisted PDA sensor for the detection of genetically modified organisms. Anal. Bioanal. Chem. 400: 777-785.   DOI
36 Liu T, Xu M, Yin H, Ai S, Qu X, Zong S. 2011. A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides. Mikrochim. Acta 175: 129-135.   DOI
37 Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. 2005. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4: 435-446.   DOI
38 Liu Z, Tabakman SM, Chen Z, Dai H. 2009. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc. 4: 1372-1381.   DOI
39 Luo Y, Nartker S, Wiederoder M, Miller H, Hochhalter D, Drzal LT, Alocilja EC. 2012. Novel biosensor based on electrospun nanofiber and magnetic nanoparticles for the detection of E. coli O157:H7. IEEE Trans. Nanotechnol. 11: 676-681.   DOI
40 Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, et al. 2001. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410: 913-917.   DOI
41 Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM. 2011. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J. Am. Chem. Soc. 133: 9650-9653.   DOI
42 Mornet S, Vasseur S, Grasset F, Duguet E. 2004. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14: 2161-2175.   DOI
43 Murray CB, Kagan CR, Bawendi MG. 1995. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270: 1335.   DOI
44 Ni P, Dai H, Wang Y, Sun Y, Shi Y, Hu J, Li Z. 2014. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens. Bioelectron. 60: 286-291.   DOI
45 Novoselov KSA, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, et al. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197-200.   DOI
46 Okada S, Peng S, Spevak W, Charych D. 1998. Color and chromism of polydiacetylene vesicles. Acc. Chem. Res. 31: 229-239.   DOI
47 Qin L-C, Zhao X, Hirahara K, Miyamoto Y, Ando Y, Iijima S. 2000. Materials science: the smallest carbon nanotube. Nature 408: 50.   DOI
48 Peng B, Li G, Li D, Dodson S, Zhang Q, Zhang J, et al. 2013. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7: 5993-6000.   DOI
49 Orendorff CJ, Gearheart L, Jana NR, Murphy CJ. 2006. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 8: 165-170.   DOI
50 Park CH, Kim JP, Lee SW, Jeon NL, Yoo PJ, Sim SJ. 2009. A direct, multiplex biosensor platform for pathogen detection based on cross-linked polydiacetylene (PDA) supramolecules. Adv. Funct. Mater. 19: 3703-3710.   DOI
51 Qiu S, Lin Z, Zhou Y, Wang D, Yuan L, Wei Y, et al. 2015. Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. Analyst 140: 1149-1154.   DOI
52 Ravindranath SP, Mauer LJ, Deb-Roy C, Irudayaraj J. 2009. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal. Chem. 81: 2840-2846.   DOI
53 Reichert A, Nagy JO, Spevak W, Charych D. 1995. Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. J. Am. Chem. Soc. 117: 829-830.   DOI
54 Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H. 2010. Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem. 118: 462-466.   DOI
55 Rotem D, Jayasinghe L, Salichou M, Bayley H. 2012. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 134: 2781-2787.   DOI
56 Spitalsky Z, Tasis D, Papagelis K, Galiotis C. 2010. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Progress Polym. Sci. 35: 357-401.   DOI
57 Tang D, Tang J, Su B, Chen G. 2010. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. J. Agric. Food Chem. 58: 10824-10830.   DOI
58 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. 2007. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6: 652-655.   DOI
59 Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA. 2006. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 6: 2630-2636.   DOI
60 Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, et al. 2006. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomed. 1: 51-57.   DOI
61 Varshney M, Li Y. 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron. 22: 2408-2414.   DOI
62 Wan Y, Lin Z, Zhang D, Wang Y, Hou B. 2011. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens. Bioelectron. 26: 1959-1964.   DOI
63 Wang F, Liu S, Lin M, Chen X, Lin S, Du X, et al. 2015. Colorimetric detection of microcystin-LR based on disassembly of orient-aggregated gold nanoparticle dimers. Biosens. Bioelectron. 68: 475-480.   DOI
64 Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21: 41-46.   DOI
65 Xie Y, Li Y, Niu L, Wang H, Qian H, Yao W. 2012. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Talanta 100: 32-37.   DOI
66 Wang S, Singh AK, Senapati D, Neely A, Yu H, Ray PC. 2010. Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chemistry 16: 5600-5606.   DOI
67 Wang Y, Montana V, Grubisicì V, Stout Jr RF, Parpura V, Gu L-Q. 2014. Nanopore sensing of botulinum toxin type B by discriminating an enzymatically cleaved peptide from a synaptic protein synaptobrevin 2 derivative. ACS Appl. Mater. Int. 7: 184-192.   DOI
68 Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, Wu H-C. 2011. Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore. J. Am. Chem. Soc. 133: 18312-18317.   DOI
69 Yang W, Gooding JJ, He Z, Li Q, Chen G. 2007. Fast colorimetric detection of copper ions using ʟ-cysteine functionalized gold nanoparticles. J. Nanosci. Nanotechnol. 7: 712-716.
70 Yi H, Qu W, Huang W. 2008. Electrochemical determination of malachite green using a multi-wall carbon nanotube modified glassy carbon electrode. Mikrochim. Acta 160: 291-296.   DOI
71 Yi Y, Zhu G, Liu C, Huang Y, Zhang Y, Li H, et al. 2013. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal. Chem. 85: 11464-11470.   DOI
72 Zhao G, Zhan X, Dou W. 2011. A disposable immunosensor for Shigella flexneri based on multiwalled carbon nanotube/sodium alginate composite electrode. Anal. Biochem. 408: 53-58.   DOI
73 Zhao J, Zhang Y, Wu K, Chen J, Zhou Y. 2011. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode. Food Chem. 128: 569-572.   DOI
74 Yu J, Liu Z, Liu Q, Yuen KT, Mak AFT, Yang M, Leung P. 2009. A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection. Sens. Actuators A Phys. 154: 288-294.   DOI
75 Zamolo VA, Valenti G, Venturelli E, Chaloin O, Marcaccio M, Boscolo S, et al. 2012. Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin. ACS Nano 6: 7989-7997.   DOI
76 Zhang Y, Zhang X, Lu X, Yang J, Wu K. 2010. Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red. Food Chem. 122: 909-913.   DOI
77 Zhou L, Li D-J, Gai L, Wang J-P, Li Y-B. 2012. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens. Actuators B Chem. 162: 201-208.   DOI