• Title/Summary/Keyword: Graph-based

Search Result 1,788, Processing Time 0.029 seconds

Proximity based Circular Visualization for similarity analysis of voting patterns between nations in UN General Assembly (UN 국가의 투표 성향 유사도 분석을 위한 Proximity based Circular 시각화 연구)

  • Choi, Han Min;Mun, Seong Min;Ha, Hyo Ji;Lee, Kyung Won
    • Design Convergence Study
    • /
    • v.14 no.4
    • /
    • pp.133-150
    • /
    • 2015
  • In this study, we proposed Interactive Visualization methods that can be analyzed relations between nations in various viewpoints such as period, issue using total 5211 of the UN General Assembly voting data.For this research, we devised a similarity matrix between nations and developed two visualization method based similarity matrix. The first one is Network Graph Visualization that can be showed relations between nations which participated in the vote of the UN General Assembly like Social Network Graph by year. and the second one is Proximity based Circular Visualization that can be analyzed relations between nations focus on one nation or Changes in voting patterns between nations according to time. This study have a great signification. that's because we proposed Proximity based Circular Visualization methods which merged Line and Circle Graph for network analysis that never tried from other cases of studies that utilize conventional voting data and made it. We also derived co-operatives of each visualization through conducting a comparative experiment for the two visualization. As a research result, we found that Proximity based Circular Visualization can be better analysis each node and Network Graph Visualization can be better analysis patterns for the nations.

Analysis of Commute Time Embedding Based on Spectral Graph (스펙트럴 그래프 기반 Commute Time 임베딩 특성 분석)

  • Hahn, Hee-Il
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.34-42
    • /
    • 2014
  • In this paper an embedding algorithm based on commute time is implemented by organizing patches according to the graph-based metric, and its performance is analyzed by comparing with the results of principal component analysis embedding. It is usual that the dimensionality reduction be done within some acceptable approximation error. However this paper shows the proposed manifold embedding method generates the intrinsic geometry corresponding to the signal despite severe approximation error, so that it can be applied to the areas such as pattern classification or machine learning.

A Visual Concurrent Programming Based on Extended State Transition Graph (확장 상태 전이 그래프에 기반을 둔 시각 병렬 프로그래밍)

  • Chung, Won-Ho;Hur, Hye-Jung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2430-2441
    • /
    • 2000
  • A visual concurrent programming environment, called ESTGVP is designed and implemented, which is easy to understand, highly portable, and can represent parallel behaviors. For our purpose, a conventional state transition graph is extended so as to enable both of synchronous and asynchronous parallel operations. We call it extended state transition graph (ESTG). ESTGVP uses the ESTG and texts for programming, and makes it easy programming sequential and parallel behaviors. Also, it is easy to understand the control structure of a program because ESTGVP is a visual programming environment based on the graph. ESTGVP is written in Tel language and thus it is highly portable on various operating systems. It consists of three major components; edition, transformation and execution. If necessary, ESTG can be transformed into C or Tel language, and its execution is based on Tel.

  • PDF

Graph-based Segmentation for Scene Understanding of an Autonomous Vehicle in Urban Environments (무인 자동차의 주변 환경 인식을 위한 도시 환경에서의 그래프 기반 물체 분할 방법)

  • Seo, Bo Gil;Choe, Yungeun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In recent years, the research of 3D mapping technique in urban environments obtained by mobile robots equipped with multiple sensors for recognizing the robot's surroundings is being studied actively. However, the map generated by simple integration of multiple sensors data only gives spatial information to robots. To get a semantic knowledge to help an autonomous mobile robot from the map, the robot has to convert low-level map representations to higher-level ones containing semantic knowledge of a scene. Given a 3D point cloud of an urban scene, this research proposes a method to recognize the objects effectively using 3D graph model for autonomous mobile robots. The proposed method is decomposed into three steps: sequential range data acquisition, normal vector estimation and incremental graph-based segmentation. This method guarantees the both real-time performance and accuracy of recognizing the objects in real urban environments. Also, it can provide plentiful data for classifying the objects. To evaluate a performance of proposed method, computation time and recognition rate of objects are analyzed. Experimental results show that the proposed method has efficiently in understanding the semantic knowledge of an urban environment.

A study on Stage-Based Flow Graph Model for Expressing Cyber Attack Train Scenarios (사이버 공격 훈련 시나리오 표현을 위한 Stage 기반 플로우 그래프 모델 연구)

  • Kim, Moon-Sun;Lee, Man-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.1021-1030
    • /
    • 2021
  • This paper proposes S-CAFG(Stage-based Cyber Attack Flow Graph), a model for effectively describing training scenarios that simulate modern complex cyber attacks. On top of existing graph and tree models, we add a stage node to model more complex scenarios. In order to evaluate the proposed model, we create a complicated scenario and compare how the previous models and S-CAFG express the scenario. As a result, we confirm that S-CAFG can effectively describe various attack scenarios such as simultaneous attacks, additional attacks, and bypass path selection.

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

Large Scale Protein Side-chain Packing Based on Maximum Edge-weight Clique Finding Algorithm

  • K.C., Dukka Bahadur;Brown, J.B.;Tomita, Etsuji;Suzuki, Jun'ichi;Akutsu, Tatsuya
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.228-233
    • /
    • 2005
  • The protein side-chain packing problem (SCPP) is known to be NP-complete. Various graph theoretic based side-chain packing algorithms have been proposed. However as the size of the protein becomes larger, the sampling space increases exponentially. Hence, one approach to cope with the time complexity is to decompose the graph of the protein into smaller subgraphs. Some existing approaches decompose the graph into biconnected components at an articulation point (resulting in an at-most 21-residue subgraph) or solve the SCPP by tree decomposition (4-, 5-residue subgraph). In this regard, we had also presented a deterministic based approach called as SPWCQ using the notion of maximum edge weight clique in which we reduce SCPP to a graph and then obtain the maximum edge-weight clique of the obtained graph. This algorithm performs well for a protein of less than 500 residues. However, it fails to produce a feasible solution for larger proteins because of the size of the search space. In this paper, we present a new heuristic approach for the side-chain packing problem based on the maximum edge-weight clique finding algorithm that enables us to compute the side-chain packing of much larger proteins. Our new approach can compute side-chain packing of a protein of 874 residues with an RMSD of 1.423${\AA}$.

  • PDF

Shape Retrieval using Curvature-based Morphological Graphs (굴곡 기반 형태 그래프를 이용한 모양 검색)

  • Bang, Nan-Hyo;Um, Ky-Hyun
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.498-508
    • /
    • 2005
  • A shape data is used one oi most important feature for image retrieval as data to reflect meaning of image. Especially, structural feature of shape is widely studied because it represents primitive properties of shape and relation information between basic units well. However, most structural features of shape have the problem that it is not able to guarantee an efficient search time because the features are expressed as graph or tree. In order to solve this problem, we generate curvature-based morphological graph, End design key to cluster shapes from this graph. Proposed this graph have contour features and morphological features of a shape. Shape retrieval is accomplished by stages. We reduce a search space through clustering, and determine total similarity value through pattern matching of external curvature. Various experiments show that our approach reduces computational complexity and retrieval cost.

Effectiveness of Edge Selection on Mobile Devices (모바일 장치에서 에지 선택의 효율성)

  • Kang, Seok-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.149-156
    • /
    • 2011
  • This paper proposes the effective edge selection algorithm for the rapid processing time and low memory usage of efficient graph-based image segmentation on mobile device. The graph-based image segmentation algorithm is to extract objects from a single image. The objects are consisting of graph edges, which are created by information of each image's pixel. The edge of graph is created by the difference of color intensity between the pixel and neighborhood pixels. The object regions are found by connecting the edges, based on color intensity and threshold value. Therefore, the number of edges decides on the processing time and amount of memory usage of graph-based image segmentation. Comparing to personal computer, the mobile device has many limitations such as processor speed and amount of memory. Additionally, the response time of application is an issue of mobile device programming. The image processing on mobile device should offer the reasonable response time, so that, the image segmentation processing on mobile should provide with the rapid processing time and low memory usage. In this paper, we demonstrate the performance of the effective edge selection algorithm, which effectively controls the edges of graph for the rapid processing time and low memory usage of graph-based image segmentation on mobile device.

An Efficient Implementation of Tornado Code for Fault Tolerance

  • Lei, Jian-Jun;Kwon, Gu-In
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.13-18
    • /
    • 2009
  • This paper presents the implementation procedure of encoding and decoding algorithms for Tornado code that can provide fault tolerance for storage and transmission system. The degree distribution satisfying heavy tail distribution is produced. Based on this distribution, a good random irregular bipartite graph is attained after plenty of trails. Such graph construction is proved to be efficient, and the experiments also demonstrate that the implementation obtains good performance in terms of decoding overhead.

  • PDF