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ABSTRACT:

The protein side-chain packing problem (SCPP) is known
to be NP-complete. Various graph theoretic based side-chain
packing algorithms have been proposed. However as the size
of the protein becomes larger, the sampling space increases
exponentially. Hence, one approach to cope with the time
complexity is to decompose the graph of the protein into
smaller subgraphs. Some existing approaches decompose the
graph into biconnected components at an articulation point
(resulting in an at-most 21-residue subgraph) or solve the
SCPP by tree decomposition (4-, 5-residue subgraph).

In this regard, we had also presented a deterministic based
approach called as SPWCQ using the notion of maximum
edge weight clique in which we reduce SCPP to a graph and
then obtain the maximum edge-weight clique of the obtained
graph. This algorithm performs well for a protein of less than
500 residues. However, it fails to produce a feasible solution
for larger proteins because of the size of the search space.

In this paper, we present a new heuristic approach for the
side-chain packing problem based on the maximum edge-
weight clique finding algorithm that enables us to compute the
side-chain packing of much larger proteins. Qur new approach
can compute side-chain packing of a protein of 874 residues
with an RMSD of 1.423A.

1 Introduction

The side-chain packing problem is a central problem in the
field of structural bioinformatics. Any method for protein
structure prediction has to rely on side-chain packing, as the
structure of the protein largely depends upon the conforma-
tion of its side-chains. Additionally, success in protein-protein
docking requires accurate modeling of side-chain conforma-
tions. Hence, the side-chain packing problem has an immense
application in the field of structural bioinformatics.

Many early and current methods for protein side-chain
packing are based on deterministic as well as heuristic ap-
proaches. Some of the deterministic approaches are based on
Dead-end-elimination approaches{5] and linear programming
approaches[6].

Recently, we developed a new protein side-chain packing
algorithm, SPWCQ, to solve the protein side-chain packing
problem. Unlike most of the existing side-chain packing
methods, we used a deterministic approach based on efficient
reduction of the side-chain packing problem to the maximum
edge-weight clique finding problem and solve this clique find-

ing problem by using one of the fastest clique finding algo-
rithms developed by our co-authors[7, §]. Moreover, unlike
the majority of the existing methods which use a rotamer li-
brary for the sampling of side-chain space, we used discrete
rotation angles for sampling of side-chain space. Although
SPWCQ performs well for a relatively middle size protein of
about 500 residues, the algorithm fails to produce a feasible
solution in feasible time for larger proteins due to the com-
binatorial nature of the protein side-chain packing problem.
As the size of the protein becomes larger, the sampling space
increases exponentially.

One approach to cope with this exponential increase in the
search space is to decompose the graph of the protein into
smaller subgraphs. Recent methods decompose the graph
into biconnected components at articulation points by which
the resulting graph is reduced to subgraphs of at most 21
residues[2], or solve the side-chain packing problem by tree
decomposition where the graph of the protein is decomposed
into subgraphs consisting of 4-5 residues{3].

In this regard, in this paper we present a new heuristic ap-
proach for large-scale prediction of protein side-chain packing
based on decomposition of the original graph into subgraphs
such that each subgraph will have a maximum edge-weight
clique. We show that the new method helps in attaining an in-
crease in the size of proteins whose side chain packing can be
calculated. Finally, we show the results of the new method on
a set of proteins and illustrate how the new heuristic approach
helps in achieving an increase in the size of proteins for our
clique based algorithm.

We begin by describing the new heuristic approach, fol-
lowed by graph generation, and then Computational experi-
ments and Results. Finally, we conclude by discussing the
implications of the results and some future directions of the
current research.

2 Our Method

Protein side-chain packing is a type of combinatorial opti-
mization problem and involves large amounts of computa-
tional time. Especially, when the size of the protein becomes
larger the computational time grows significantly.

The fundamental property of side-chain conformations ap-
pearing in the final native-like structure is that they have some
sense of interconnectedness with some geometrical and bio-
physical restrictions. In this respect, no side-chain conforma-
tion can be correctly predicted without considering the influ-
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ence of the other residues in the same protein.

Moreover, for deterministic approaches there is always a
trade-off between the size of the protein that can be handled
and the efficiency of the method.

Our previous approach SPWCQ reduces the SCPP into an
edge-weight graph and then computes the maximum edge-
weight clique to give an optimal solution. Similar to that of
other deterministic approaches, SPWCQ also does not pro-
duce a plausible solution if the size of the protein becomes
larger than 500 residues. Hence, in this paper we describe a
heuristic technique that we have developed in order to cope
with the increasing size of the proteins.

In this approach, the original protein is first divided into
a number of polymers, and edge weight subgraphs for each
polymer are generated. Moreover, the maximum edge-weight
clique finding algorithm is applied for all of the generated sub-
graphs and the final solution is obtained by the union of the
vertices of the cliques for these subgraphs.

2.1 Decomposition of Protein into Polymers

For deterministic based algorithms, as the size of the protein
increases the search space becomes intractable. Hence, one of
the approaches to overcome this intractability is to decompose
the search space into smaller search spaces. In our approach,
the protein under consideration is first divided into some (say
p) equal divisions. Although, more insight into the problem
would let us divide the protein at loop regions which are not
very important from the structural view point, in this work for
theoretical purpose, we divide the protein into equal residue
divisions.

Since the main purpose of the paper is to show that the
heuristic techniques to divide a protein into smaller subgraphs
indeed work, we do not really give much emphasis to the divi-
sion of a protein at some bio-chemically relevant residue posi-
tions although that will be our future direction of the research.

Let us define the graph corresponding to the original PDB
as the original graph, and the graphs belonging to polymers as
subgraphs.

Let r1,...,7i—1,7iy- -y Ti=15T1y-+ -y Tm,- - -, Iy bE the residues
of the protein whose side-chain packing has to be calcu-
lated. Moreover, let us consider that we divide the original
protein into p polymers with equal number of residues viz.
Py,P,,...and P, where polymer Py is comprised of residues
from ry through r;_;, polymer P, is comprised of residues
from r; through r;_; and polymer P, is comprised of residues
from ry, through r,,.

2.2 Sampling of Side-chains

After the decomposition of the protein into p polymers, for
each amino acid belonging to all of the polymers, the sampling
of side-chain search space is done by generating different side-
chain conformations by rotating each side-chain of the respec-
tive amino acid by an interval of (2rt/k) where k=0,..,K —1
along the ) axis, generating 2n/K conformations for each
amino acid.

Also, to cope with the capacity of the clique algorithm, only
the rotation of side-chain atoms along the %; axis is consid-

ered. The value of X is taken to be 18 based on some prelimi-
nary experiments, as in SPWCQ.

One of the things to be noted here is that unlike most of the
other proposed algorithms, our method does not use a rotamer
library that has a much lower number of possible conforma-
tions for each amino acid residue.

2.3 Construction of Graph for Each Polymer

2.3.1 Generation of Vertices

After the sampling for the side-chain search space is com-
pleted, the corresponding subgraph for each polymer is gen-
erated. Let us suppose that we are generating the subgraph
corresponding to polymer P;.

While generating the graph for each polymer, both local
consistency (the consistency of the vertices and edges of the
polymer with vertices and edges of the same polymer) and
global consistency (the consistency of the vertices and edges
of the polymer with vertices and edges of other polymers) has
to be maintained.

Let r,‘;,v be the u'* residue in polymer P; whose side-chain
atoms are rotated by (2nv/K) radians. Then, all the rotamers
rf"v that do not collide with the main chain of the original pro-
tein are the candidates of the vertices of the subgraph corre-
sponding to polymer P;.

The rotameric conformation (rotamer) rf,’v is said to col-
lide with the main chain if the minimum distance between the
atoms in r,';’v and the atoms in the entire main chain is less than
14.

In a similar manner, a set of candidate vertices for each sub-
graph of polymers P, through P, is generated.

2.3.2 Generation of Edges

An edge is drawn between a pair of vertices (rotamers) if the
vertices are consistent. Two vertices are said to be consistent if
the minimum distance between the atoms of these two vertices
is greater than 44.

Moreover, both local consistency and global consistency
has to be maintained while generating edges.

Let us consider that we are generating edges for the sub-
graph corresponding to the polymer P;. The local consistency
and global consistency is maintained in the following manner.

e Local Consistency

Let rl , be the rotamer generated for u'* residue whose
side-chain atoms are generated by (2nv) /K radians and
belonging to polymer P, and 7y, be the rotamer gener-
ated for w residue whose side-chain atoms are gener-
ated by (2mx) /K radian and belonging to polymer P;. In
case of local consistency, the polymer is the same, i.e.,
i=j.

Hence, an edge is drawn between rotamers rf,,v and r,x
where i = j, if these two conformations do not collide(i.e
the minimum distance between the atoms of these two
conformations is not less than 44) and an edge is not
drawn between these two conformations if the minimum
distance between their atoms is less than 44. Moreover,
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for the weight of the edge, respective weight is also as-
signed according to the probability distribution function
developed by Samudrala et al [9].

Moreover, edges are not drawn between the conforma-
tions of the same residue (i.e. no edge is drawn between
rf"v and ry,; where i = j and u = w), as each residue
can have at most one conformation in the final native-
like structure. This step corresponds to considering the
collision of conformations within the same polymer.

However, we also have to take into consideration the
possible collisions of the rotamers outside their polymer
bound. Hence, we also have to check for global consis-
tency.

Global Consistency

Global main chain consistency is maintained in the step
of vertices generation as the candidates of vertices are
checked for consistency against the whole main chain,
whereas, in the edge generation until this step, only local
side-chain consistency is taken into account. Hence, we
also have to check for global consistency for side-chain
conformations.

The conformations of side-chains appearing in the final
native-like structure from one polymer should be consis-
tent with the conformations of side-chains from another
polymer. This consistency is maintained in the following
manner.

Let us consider that the subgraph for polymer P; is being
generated. While checking for side-chain consistency,
it is also necessary to check the consistency of the side-
chain conformation of every vertex r:;’v, which is the con-
formation generated for the 1" residue whose side-chain
atoms are rotated by (2nv)/K radians and belonging to
polymer P;, to all other vertices in other polymers P;.

Let 7, » be the conformation of the w" residue whose
side-chain atoms are generated by rotating (2mx)/K ra-
dian and belonging to polymer P;, and combined with
rf‘,v, be the two vertices and let us suppose that i # j
and i < j. If the minimum distance between atoms of
these two rotameric conformations is less than 44, i.e.
if these two rotameric conformations collide with each
other, then all the edges connected to this particular ver-
tex (rf,’v of polymer P;) in the subgraph of P; are set to
zero as this vertex cannot be included in the final solu-
tion; otherwise edges are kept untouched.

This process of generation of edges is repeated until the
consistency with all the polymers is checked. In this way
a maximum edge-weight graph corresponding to poly-
mer P; is generated.

Once this process is repeated for all polymers from P
through P,, edge-weight subgraphs for all polymers are
obtained. Although there is no theoretical proof that each
polymer will have a maximum clique with the number of
vertices being equal to the number of amino acids in each
corresponding polymer, in all our computational experi-
ments we were able to obtain a clique with the size of the
number of amino acids in the polymer.

Particularly, for the generation of the subgraph for the
first polymer, we have to take into consideration the con-
sistency of the side-chain with all remaining polymers.
However, as we proceed to second polymer and so on,
we do not have to check the packing consistency with
the vertices of the subgraphs belonging to the polymers
prior to the polymer in consideration, i.e. for the poly-
mers for which the corresponding subgraphs are already
generated. This step is particularly helpful in reducing
the computational time for the generation of subgraphs
for consecutive polymers and the simultaneous calcula-
tion of the cliques in each polymer.

In this way, subgraphs are generated for each polymer.
Finally, one of the fastest clique finding algorithms [7, 8]
is utilized for each subgraph and the final solution is ob-
tained by taking the union of the vertices of the maximum
edge-weight cliques of each subgraph.

2.3.3 Weight Function

We use the all-atom distance dependent conditional probabil-
ity based discriminatory function proposed by Samudrala et
al.[9] to assign weight to the edges of the subgraphs.

Readers are requested to refer to Samudrala et al.[9] for the
detailed exposition of the function. In essence, this probabil-
ity function gives some value given two atoms and the dis-
tance between these two atoms. Especially, while assigning
the weight to the edge between two vertices, the distance be-
tween each pair of the atoms of each vertex (conformation) is
calculated and assigned some weights. The total weight cor-
responding to the summation of weights for all pairs of atoms
gives the weight of the edge joining any two vertices.

For our calculation, the score table is pre-calculated to en-
hance the efficiency of the algorithm. This score table is a
three dimensional table whose elements represent the score
between two atom types separated by some specific distance.
Hence, if the atom types and the distance between these atom
types are known, by referring to the corresponding element of
the score-table, score can be easily calculated. For the calcu-
lation of weights between any two conformations (vertices) of
the sub graph generated, the sum of the scores of correspond-
ing atoms of the conformation is calculated and assigned as
the score to the edge between these two corresponding ver-
tices.

2.4 Clique finding algorithm: WCQ

The maximum clique finding algorithm developed by coau-
thor(Suzuki and Tomita) is applied for finding the maximum
edge-weight clique of the graph generated above. For the de-
tailed description of the algorithm, the readers are requested
to refer to [7, 8]. Here, a brief overview of maximum edge-
weight clique algorithm is presented.

Let the number of vertices in the maximum clique be ®
and the weight between two vertices p and ¢ € V be de-
fined as w(p,q)(= w(q,p)), then the weight of the clique
G'(= (V',E")) can be represented as W(V').

WCQ essentially finds all the maximum cliques in the given -
graph and returns the clique with the maximum weight as the
output. The algorithm basically maintains four variables Q,
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Figure 1: An example showing the side-chain packing of a
protein of sequence ELVRFHKGL., In this idealized example,
the protein is divided into three polymers at residues repre-
sented by vertical lines. Hence, sequence ELV makes the first
polymer, sequence RFH makes the second polymer and the
sequence KGL makes the third polymer. At first, an edge
weight graph is obtained for each polymer as described in the
graph generation section. Let us consider that Vy, V5, V3, Ej,
Ly and L, are the conformations of the respective side-chains
of amino acids V, E, and L in the first polymer. The con-
formations represented in small white circles represent that
the conformation collides with the main chain, and hence will
be deleted from the set of vertices. The conformations repre-
sented by small black circles denote that these conformations
do not collide with the main chain. The solid line between two
conformations represents that these two conformations collide
with each other within the same polymer and the dotted line
represents that the two connected conformations collide with
each other outside the polymer. So, for the first polymer, V;
does not appear in the final set of vertices, and there is no edge
between V, and Ly as these conformations collide within the
polymer. All the edges connected to V, and L, are deleted as
V2 collides with Fy of the second polymer and L, collides with
G of the third polymer. Hence, the final subgraph consists of
three vertices E1, Ly and V3. Similarly, in the second polymer,
F3 does not appear in the set of vertices for the final graph.
Moreover, all the edges connected to F» are deleted and there
is no edge between Fi and R;. Hence the final subgraph will be
as shown in the figure. Finally, for the third polymer, the sub-
graph would be as shown in the figure. After all the subgraphs
are generated, the maximum edge weight clique finding algo-
rithm is utilized on each subgraph and the maximum edge-
weight clique is obtained for each of these subgraphs. The
final solution is obtained by the union of the vertices of the
maximum edge-weight cliques of the respective subgraphs.

Omax, R and W(Q) for the weight. Let us call the number ob-
tained by NUMBERING-ARRANGING (i.e. the upper bound
of the size of the clique that can be obtained by searching p)
as No(p). In order to skip the recursive steps on R, R is not
expanded if |Q| + No(p) < |Qumaxl-

Regarding the calculation of the weight of the clique, addi-
tion of one new node to the set of current maximum clique Q
adds |Q| edges to the graph, and one has to add the weights
of each of these added edges. In order to cope up with
the weights of maximal clique, the weight of the clique be-
fore adding these edges is kept as Wy, and in the process of
searching, backtracking one step can lead us to the weight
of W(Q). By doing this, the efficiency of the calculation of
the weights is increased as there is no need to calculate the
weights of the edge from the very beginning each time. When
W(Q) > W(Qumax), renewal of the weight clique is done by as-
signing O t0 Qpmay. Finally, when every maximum cliques of
the graph is enumerated, Qpg, is the maximum weight clique
of the given graph.

Essentially, the algorithm WCQ runs as follows:

procedure WCQ(G = (V, E))

begin
Q= 0; Opar = 0;
W(Q) := 0; W(Qmax) :=0;
Sort vertices of V in non-increasing order

with respect to their degrees;

NUMBERING-ARRANGING(V, No);
EXPAND-WCQ(V,No)
output Qg

end of WCQ

procedure EXPAND-WCQ(R, N)
begin
while R £ 0 do
p = the vertex in R such that
No(p) = Max No(g)| € R
if |Q| + No(p) > |Qmax| then
Wpre := W(Q);
fori:=1t0|Q| do
W(Q) :=W(Q) +w(p,Q[i]);
od
Q:=Qu{p}
R, :=RNT(p);
if R, # 0 then
NUMBERING-ARRANGING(R,,,No')
EXPAND-WCQ(R,,No')
else if W(Q) > W(Qmay) then
Omax == Q
W(Qmar) := W(Q)
fi
fi
fi
Q:=0—{p}
W(Q) = Wpre
R:=R—{p}
od
end of EXPAND-WCQ
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3 Computational Experiments and Results

We perform a set of computational experiments in order to as-
sess the prediction accuracy of our new approach. Moreover,
in order to assess the computational time of the approach we
also perform a set of experiments. ’

As mentioned in the Our Method section, in this paper we
do not give much emphasis on breaking the original protein
into bio-chemically relevant polymers. For simplicity, we just
divide the polymer into p polymers where each polymer has
equal an number of residues. The computational environ-
ment used for the experiments is a PC with an Intel Pentium
2.66GHz CPU running the Linux operating system.

The approach is utilized to predict the side-chain position-
ing of a set of proteins by dividing each protein into p poly-
mers, where p=2,3,4 or 5 equal divisions and the results of
the respective RMSD of the computed structure and the native
structure are shown.

3.1 Accuracy of Prediction

The computational experiments for a set of eight proteins are
performed for the validation of the new approach. Each pro-
tein was divided into an equal number of polymers p, where
P=2,3,4, or 5. After the generation of the graph for each poly-
mer of these proteins, the maximum edge-weight clique find-
ing algorithm WCQ is utilized.

The results of the computation of protein side-chain pack-
ing for a set of proteins is given in Table 1 along with the
respective RMSD for each protein.

PDB #Residue p=2 p=3 p=4 p=5
1tdj 514 164 167 171 171
1xwl 580 1.66 156 160 174
1gof 639 163 146 1.69 1.70
1biy 689 1.53 164 177 1.72
laa6 696 158 1.68 1.61 17
1a8i 812 1.56 1.63 163 1.75
1Inh 836 150 1.63 164 1.55
1fiy 874 142 153 163 154

Table 1: Performance of our approach for a set of eight pro-
teins. The first column represents the PDB code of the protein
and the second column represents the number of residues in
the protein. The column under p=2 give the RMSD results
when the protein is divided into two polymers; p = 3 gives the
RMSD of the computed structure when the protein is divided
into three polymers, and so on.

3.2 Computational Time

Moreover, in order to know the time complexity of the new
approach, we also measured the computational time for the
prediction of the side-chain packing of the same set of proteins
as in Table 1, when each protein is divided into two, three, four
and five polymers. The results of the computational time are
presented in Table 2.

PDB #Residue p=2 p=3 p=4 p=5
1tdj 514 481 232 123 190
1xwl 580 758 394 267 129
1gof 639 530 346 294 178
1biy 689 620 416 680 403
1aa6 696 652 580 263 414
1a8i 812 882 972 483 479
Hnh 836 1116 1150 600 350
1fiy 874 12890 438 691 555

Table 2: Computational time of our approach for a set of eight
proteins. The first column represents the PDB code of the pro-
tein and the second column represents the number of residues
in the protein, The third, fourth, fifth and sixth columns rep-
resent the computation time in seconds when the protein is
divided into two, three, four and five polymers respectively.

4 Discussion

We have developed a new approach for side-chain packing
based on a heuristic technique to divide the original graph
of the protein into subgraphs and search for the maximum
edge-weight cliques in these subsequent subgraphs. After
the computation of the maximum edge-weight cliques in each
subgraph, the union of the vertices of these maximum edge-
weight cliques is obtained, giving the final solution of the pro-
tein side-chain packing problem.

Although we do not have any theoretical proof that all the
subgraphs will have the maximum edge-weight clique with
the number of vertices being equal to the number of residues
in each polymer, in all of our computational experiments we
were able to obtain a clique with the number of vertices being
equal to the number of residues in each polymer. It is to be
noted here that for proteins with size less than 500 residues,
our previous approach SPWCQ [4] is best suited. Hence in
this work, we only perform the computational experiments for
proteins larger than 500 residues.

The performance of this approach for a set of proteins rang-
ing from 514-874 residues is very enthusiastic, with the worst
RMSD being 1.77A. Especially, as per our initial suspicion
the algorithm works best for p=2 (p is the number of poly-
mers), which is consistent with our initial definition of SCPP
as a single maximum edge-weight clique. The computational
time shown in Table 2 depicts that the time for the compu-
tation of the side-chain packing decreases as the number of
polymers increases. Moreover, from Table 1, it can be seen
that RMSD does not deteriorate proportionally to the number
of decomposed subgraphs, which elucidates that we can still
increase the time efficiency of the algorithm without expense
of the accuracy of prediction,

One of the future directions of the research is to incorpo-
rate biological knowledge in order to break apart the protein at
bio-chemically relevant residues. One of the possible relevant
residues could be the residues belonging to the loop regions
that are not very important from a structural aspect. Further-
more, in this paper we use the discrete rotamers generated by
rotating each side-chain through some specific angles. Hence,
other possible improvements are the usage of a backbone de-
pendent rotamer library.
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Theoretically, our method should work for a protein of any
size. However, due to the size of the original graph which
has to be taken into account for the subgraph generation, we
were not able to compute side-chain packing for much larger
proteins. This also owes to the fact that for each side-chain we
are considering a lot more rotamers than the usual rotamers
in the rotamer library. Hence, we hope to increase the size
of proteins that our method can predict by using the available
rotamer library.
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