• Title/Summary/Keyword: Granular flow

Search Result 112, Processing Time 0.03 seconds

Incipient motion criteria of uniform gravel bed under falling spheres in open channel flow

  • Khe, Sok An;Park, Sang Deog;Jeon, Woo Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.149-149
    • /
    • 2018
  • Prediction on initial motion of sediment is crucial to evaluate sediment transport and channel stability. The condition of incipient movement of sediment is characterized by bed shear stress, which is generated from force of moving water against the bed of the channel, and by critical shear stress, which depends on force resisting motion of sediment due to the submerged weight of the grains. When the bed shear stress exceeds the critical shear stress, sediment particles begin rolling and sliding at isolated and random locations. In Mountain River, debris flow frequently occurs due to heavy rainfall and can lead some natural stones from mountain slope into the bed river. This phenomenon could add additional forces to sediment transport system in the bed of river and also affect or change direction and magnitude of sediment movement. In this paper, evaluations on incipient motion of uniform coarse gravel under falling spheres impacts using small scale flume channel were conducted. The drag force of falling spheres due to water flow and length movement of falling spheres were investigated. The experiments were carried out in flume channel made by glass wall and steel floor with 12 m long, 0.6 m wide, and 0.6 m deep. The bed slopes were selected with the range from 0.7% to 1.5%. The thickness of granular layer was at least 3 times of diameter of granular particle to meet grain placement condition. The sphere diameters were chosen to be 4cm, 6 cm, 8 cm, 10 cm. The spheres were fallen in to the bed channel for critical condition and under critical condition of motion particle. Based on the experimental results, the Shields curve of particles Reynold number and dimensionless critical shear stress were plotted. The relationship between with drag force and the length movement of spheres were plotted. The pathways of the bed material Under the impact of spheres falling were analyzed.

  • PDF

Permeability Reduction of Geotextile Filters Induced by Clogging (폐색으로 인한 부직포의 투수능 저하 현상)

  • ;;Lakshmi N. Reddi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

A Case Study of Sediment Transport on Trenched Backfill Granular and Cohesive Material due to Wave and Current

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.86-98
    • /
    • 2016
  • In this study, after the installation of a subsea pipeline, backfilling was performed in the trenched area. During these operations, a stability problem in the subsea pipeline occurred. The pipeline was directly impacted by environmental loading such as waves and currents that were caused by backfill material when scouring or sediment transport and siltation was carried out. Therefore, this study reviewed whether trenching was necessary, and conducted research into an indigenous seabed property that contains granular soil. A study of cohesive soil was also conducted in order to cross-correlate after calculating the values of the critical Shields parameter relevant to elements of the external environment such as waves and current, and the shear Shields parameter that depends on the actual shearing stress. In case of 1), sedimentation or erosion does not occur. In the case of 2), partial sedimentation or erosion occurs. If the case is 3), full sedimentation or erosion occurs. Therefore, in the cases of 1) or 2), problems in structural subsea pipeline stability will not occur even if partial sedimentation or erosion occurs. This should be reflected particularly in cases with granular and cohesive soil when a reduction in shear strength occurs by cyclic currents and waves. In addition, since backfilling material does not affect the original seabed shear strength, a set-up factor should be considered to use a reduced of the shear strength in the original seabed.

Numerical Modeling of Large Triaxial Compression Test with Rockfill Material Considering 3D Grain Size Distribution (3차원 입도분포를 고려한 락필재료의 대형삼축압축시험 수치모델링)

  • Noh, Tae Kil;Jeon, Je Sung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.55-62
    • /
    • 2012
  • In this research, the algorithm for simulating specific grain size distribution(GSD) with large diameter granular material was developed using the distinct element analysis program $PFC^{3D}$(Particle Flow Code). This modeling approach can generate the initial distinct elements without clump logic or cluster logic and prevent distinct element from escaping through the confining walls during the process. Finally the proposed distinct element model is used to simulate large triaxial compression test of the rockfill material and we compared the simulation output with lab test results. Simulation results of Assembly showed very well agreement with the GSD of the test sample and numerical modeling of granular material would be possible for various stress conditions using this application through the calibration.

Removal Charateristics of Erythrosine by Activated Carbon Adsorption (활성탄 흡착에 의한 Erythrosine의 제거 특성)

  • Lee, Jong-Jib;Yoon, Sung-Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.499-504
    • /
    • 2009
  • Erythrosine is used a food coloring, ink and dye, etc. but erithrosine is rarely used in United States due to its known hazards. The adsorption characteristics of erythrosine by granular activated carbon were investigated in the batch adsorber and the packed column. The adsorptivity of activated carbon for erythrosine were largely improved by pH control. When the pH was 11 in the sample, the erythrosine could be removed 98% of initial concentration. It was estabilished that the adsorption equilibrium of erythrosine on granular activated carbon was successfully fitted by Freundlich isotherm equation in the concentration range from 10mg/L to 1,000mg/L. The characteristics of breakthrough curve of activated carbon packed column depend on the design variables such as initial concentration, bed height, and flow rate.

Removal of Quinoline Yellow by Granular Activated Carbon (입상 활성탄에 의한 Quinoline Yellow의 제거)

  • Lee, Jong-Jib;Lee, Chang-Yong
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.206-212
    • /
    • 2010
  • The adsorption characteristics of quinoline yellow by granular activated carbon were investigated experimently in the batch adsorber and packed column. The adsorptivity of activated carbon for quinoline yellow were largely improved by acidic pH and higher temperature. When the pH was 3 at $60^{\circ}C$, quinoline yellowcould be removed 97 percent of initial concentration(10 mg/L). It was estabilished that the adsorption equilibrium of quinoline yellow on granular activated carbon was successfully fitted by Freundlich isotherm equation in the temperature range from $25^{\circ}C$ to $60^{\circ}C$. The estimated values of k and ${\beta}$ are 38.71~166.60, 0.380~0.490, respectively. The breakthrough curve of activated carbon-packed column depends on the design variables such as initial concentration, bed height, and flow rate.

Study on Adsoption Characteristics of Tharonil on Activated Carbon Fixed Bed (활성탄 고정층에 대한 Tharonil의 흡착특성에 관한 연구)

  • Lee, Jong-Jip;Yu, Yong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • To obtain the breakthrough characteristics for the design of fixed bed adsorption plant, adsorption experiment on granular activated carbon was performed with tharonil in the fixed bed. The pore diffusivity and surface diffusivity of tharonil estimated by the concentration-time curve and adsorption isotherm were $D_s=2.825{\times}10^{-9}cm^2/s,\;D_p=1.26{\times}10^{-5}cm^2/s$, respectively. From comparison of the pore diffusivity and surface diffusivity, it was found that surface diffusion was controlling step for intrapaticle diffusion. The breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results. The surface diffusivity and film mass transfer coefficient had no effect on the theoretical breakthrough curve but the adsorption isotherm had fairly influence on it. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

Efficiency Evaluation of Adsorbents for the Removal of VOC and NO2 in an Underground Subway Station

  • Son, Youn-Suk;Kang, Young-Hoon;Chung, Sang-Gwi;Park, Hyun-Ju;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • Adsorbent combination studies have been carried out to remove nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs: BTEX) out of a subway environment characterized by high flow and low concentration. Optimal conditions for the high removal efficiency of the concerned target compounds were obtained through testing a series of control factors such as adsorbent sorts, thicknesses, and superficial velocity. It was found that the efficiencies increased as the specific surface area of activated carbon and its thickness increased, and external void fraction decreased. Furthermore, mixed activated carbon with granular and constructed contents was extensively tested to reduce pressure drop through the carbon bed. It was found that the performance of higher contents of granular activated carbon was better than that of higher contents of the constructed carbon. When the mixed carbon was applied to the subway ventilation system in order to eliminate $NO_2$ and VOC simultaneously, the removal efficiencies were found to be 75% and 85%, respectively.

Power Current Control of a Resonant Vibratory Conveyor Having Electromagnetic Drive

  • Despotovic, Zeljko V.;Ribic, Aleksandar I.;Sinik, Vladimir M.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.677-688
    • /
    • 2012
  • The vibratory conveyors with electromagnetic drive are used for performing gravimetric flow of granular materials in processing industry. By realizing free vibrations of variable intensity and frequency over a wide range through application of the electromagnetic actuator, suitable power converter, and the corresponding controller, continuous conveyance of granular materials have been provided for various operating conditions. Standard power output stages intended for control of vibratory conveyance using thyristors and triacs. Phase angle control can only accomplish tuning of amplitude oscillations, but oscillation frequency cannot be adjusted by these converters. Application of current controlled transistor converters enables accomplishing the amplitude and/or frequency control. Their use implies the excitation of a vibratory conveyor independent of the supply network frequency. In addition, the frequency control ensures operation in the region of mechanical resonance. Operation in this region is favourable from the energy point of view, since it requires minimal energy consumption. The paper presents a possible solution and advantages of the amplitude-frequency control of vibratory conveyors by means of a current controlled power converter.

Surface morphology, Glossiness and Hardness of Zn-Cr and Zn-Cr-X ternary alloy Electrodeposits (고속도금된 Zn-Cr 및 Zn-Cr-X 3원합금 도금층의 표면조직, 광택도 및 경도)

  • 예길촌;김대영;서경훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2003
  • The surface morphology, the glossiness and the hardness of Zn-Cr and Zn-Cr-X(X:Co, Mn) alloy electrodeposits were investigated by using chloride bath with EDTA additive and flow cell system. The surface morphology of Zn-Cr alloy and Zn-Cr-Mn alloy changed from fine needle shape crystalline structure to colony structure of fine granular crystallites with increasing current density in the range of 20-100 $A/dm^2$. The surface morphology of Zn-Cr-Co alloy deposited from low Co concentration bath(2.5-10 g/$\ell$) was similar to that of Zn-Cr alloy, while that of Zn-Cr-Co alloy deposited from high cobalt concentration bath was fine granular crystalline structure in the same range of current density. The glossiness of Zn-Cr and Zn-Cr-Mn alloy increased noticeably with increasing current density, while that of Zn-Cr-Mn alloy decreased with increasing Mn concentration of bath in high current density region. The glossiness of Zn-Cr-Co alloy deposited from low Co concentration bath increased with current density while that of the alloy from high Co concentration bath decreased with increasing current density. The hardness of Zn-Cr and Zn-Cr-X alloy increased noticeably with current density.