• 제목/요약/키워드: Grain sizes

검색결과 446건 처리시간 0.023초

Effect of the Sintering Temperature on Electrical Properties of Porous Barium-strontium Titanate Ceramics

  • Kim, Jun-Gyu;Sim, Jae-Hwang;Cho, Won-Seung
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.5-10
    • /
    • 2003
  • Porous barium-strontium titanate ceramics were fabricated by adding corn- or potato-starch (are referred to as starch). The effect of sintering temperature on the microstructure and electrical properties of the porous ceramics was investigated. The room-temperature electrical resistivity of the barium-strontium titanate ceramics decreased with sintering temperature. The porosity and pore size were decreased and the grain size was increased with increasing the sintering temperature. The porosity and grain size of the barium-strontium titanate ceramics with corn-starch sintered at 1300 and 1450$^{\circ}C$ were 28.5, 22.6% and 3.2, 6.2 $\mu\textrm{m}$, respectively. The average pore sizes of the barium-strontium titanate ceramics with corn-starch sintered at 1300, 1400 and 1450$^{\circ}C$ were 0.5, 0.3 and 0.2 $\mu\textrm{m}$, respectively. The decrease in the room-temperature resistivity with increasing sintering temperature is attributed mainly due to the increase of grain size and the decrease of the electrical barrier height of grain boundaries as well as the partial decrease of porosity.

나노 질화규소 세라믹스의 내마모 특성 (Wear Properties of Silicon Nitride Nano-Ceramics)

  • 김재희;;김원식;홍성현
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.505-509
    • /
    • 2009
  • In this study, bulk nano-crystalline $Si_3N_4$ ceramics were fabricated by spark plasma sintering (SPS) and their mechanical properties, in particular wear, were investigated. A wide range of grain sizes, from 80 nm and 250 nm were obtained by varying sintering conditions ($1550^{\circ}C$-5 min to $1650^{\circ}C$-20 min). The elastic modulus of obtained ceramics was ${\sim}250$ GPa and hardness was in the range of $13{\sim}14$ GPa. The indentation fracture toughness increased from $2.58MPa{\cdot}m^{1/2}$ to $3.24MPa{\cdot}m^{1/2}$ with increasing sintering temperature possibly due to the elongated grains. Sliding wear tests revealed at least an order magnitude improvement in wear resistance with grain refinement. Microstructure analysis indicated that nano-$Si_3N_4$ specimens worn mainly through delamination and microcracking, while that of coarser specimens revealed severe wear with grain debonding and fracture.

스파크 플라스마 소결공정의 전산모사(2부 : 해석) (Computer aided simulation of spark plasma sintering process (Part 2 : analysis))

  • 금영탁;정상철;전종훈
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 2006
  • 본 2부의 연구에서는 스파크 플라스마 소결의 온도분포, 상대밀도, 입자성장을 해석 하기 위하여 1부 연구의 시뮬레이션 이론을 바탕으로 스파크 플라스마 소결공정을 유한요소법(FEM)과 몬테카를로법(MCM)으로 전산모사하고 실험치와 비교한다. 전산모사를 통하여 소결체의 소결온도가 높을수록 입자성장이 커지고 밀도가 높아져 기계적 성질이 향상되고, 고상 소결에서 몬테카르로 단계가 증가할 수록 기공의 감소와 입자크기의 증대함을 보여 준다.

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho;Kim, Young-Deak;Lee, Jong-Wook
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1412-1421
    • /
    • 2018
  • Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

Monsoonal sediment transport along the subaqueous Mekong Delta: An analysis of surface sediment grain-size changes

  • Thanh C., Nguyen;An T., Dang;Khuong N.T., Tran
    • Ocean Systems Engineering
    • /
    • 제12권4호
    • /
    • pp.403-411
    • /
    • 2022
  • Annually, about 48-60% of sediment discharge of the Mekong River is delivered near the mouths of the Mekong River branches which is mostly coinciding with the southwest (SW) monsoon. This sediment budget in turn will be southwestwardly transported along the coast of the Mekong Delta (MD) during the northeast (NE) monsoon. Analysis of monsoonal changes in grain-size distribution (GSD) of surface sediment contributes to a better understanding of erosion and deposition processes along the MD. This study aims to figure out changes in GSD and sediment textures along the MD between SW and NE monsoons based on 183 surficial sediment samples collected along the MD during two field surveys carried-out in October 2016 and February-March 2017. Compared to the GSD during the SW and NE monsoon, the GSD along the MD changed significantly, especially in the estuary areas and along the coast of Bac Lieu and Ganh Hao. Whereas, in the west coast of the MD, GSD seem no changes between the two seasons. These changes in seabed sediment suggest that sediment with grain-sizes ranging from silt to fine sand can be transported during only a NE season.

RF 마그네트론 스퍼터링 방법으로 SiO2/Si(100) 기판위에 성장시킨 ZnO 박막의 구조 및 광특성 (Structural and Optical Properties of ZnO Thin Films Grown on SiO2/Si(100) Substrates by RF Magnetron Sputtering)

  • 한석규;홍순구;김효진;이재욱;이정용
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.360-366
    • /
    • 2006
  • A series of ZnO thin films were grown by radio-frequency (RF) magnetron sputtering with various RF powers on $SiO_2/Si$(100) substrates at $500^{\circ}C$. Thicknesses of the investigated ZnO films were fixed to about 250nm by changing the growth time based on the changes of growth rates with RF powers. All the ZnO thin films were grown with <0001> preferred orientation. Average grain sizes of about 250nm-thick ZnO films evaluated by FE-SEM, AFM, and TEM were increased by decreasing the RF power. Structural properties addressed by FWHM values of XRD (0002) omega rocking curves and their intensities were better for the smaller grain sized ZnO films grown with high RF powers, which implies small values of tilt for smaller grain sized ZnO films. However, optical properties addressed by intensities of band edge emissions from room temperature and low temperature photoluminescence were better for the larger grain sized ZnO films with low RF power, which implies grain boundaries acted as nonradiation recombination centers.

디지털 초음파 신호처리 기법을 이용한 열처리된 스테인레스 스틸의 그레인 크기 결정에 관한 연구 (A Study on the Determination of Grain Size of Heat-treated Stainless Steel Using Digital Ultrasonic Signal Processing Techniques.)

  • 임내묵;이영석;김성환
    • 한국음향학회지
    • /
    • 제18권8호
    • /
    • pp.84-93
    • /
    • 1999
  • 본 논문에서는 디지털 신호처리기법을 기초로 한 열처리된 스테인레스 스틸의 그레인 크기에 대한 결정 방법을 제안하였다. 이 방법은 여러 개의 특징 파라메터들, 차분절대평균값, 분산, 평균주파수, 자귀회귀모델계수 그리고, 선형켑스트럼 계수를 이용하여 증거축적방법을 통해 수행한다. 각각의 특징파라메터는 열처리된 금속에 초음파를 발사하여 돌아온 반사신호를 가지고 추출된다. 실험 결과로서 몇 개의 특징파라메터만 가지고는 열처리된 금속의 그레인 크기를 정확하게 결정할 수 없음을 확인하였다. 열처리된 금속의 그레인 크기에 대한 결정은 기준 파라메터로부터 측정한 거리를 이용한 증거축적방법을 사용하였으며, 퍼지매핑함수를 도입하여 이를 응용하였다. 본 논문의 실험을 위해 다양한 그레인 크기를 가진 열처리된 스테인레스 스틸 금속을 사용하였으며, 이러한 실험결과로부터 본 논문에서 제안한 방법이 지금까지 발표된 그레인 크기 결정방법보다 효과적임을 입증하였다.

  • PDF

대두종자(大豆種子)의 대소(大小)가 초기생육(初期生育) 및 수량(收量)에 미치는 영향(影響) (The Effects of Seed Size on the Early Seedling Growth and Yield of Three Soybean(Glycine max. L.) Cultivars)

  • 박기선;최창렬;강재철
    • 농업과학연구
    • /
    • 제16권2호
    • /
    • pp.138-151
    • /
    • 1989
  • In order to find the effects of seed size on the early seedling growth and yield of soybean, three soybean cultivars in Korea were investigated. Seed size was classified into large and small according to the weight and planted in pots(1/5000a) and in the field. Three soybean cultivars respresenting large, medium and small grains were Hwangkeum-kong, Kwangkyo and Bangsa-kong respectively. These cultivars were planted on June 20, 1987. 1. The plant height, stem diameter, root length and leaf area index(LAI) of the seed with large size seemed larger than the seed with small size regardless of cultivars. 2. The fresh and dry weight were different depending upon the grain sizes. The large grain had heavier fresh and dry weight than the small grains. 3. The protein consumption rate of the cotyledon of Bangsa-kong with small grain size was faster than the Hwangkeum-kong with large grain size. 4. The stem length, stem diameter and number of main stem node of the seed with large size seemed larger than the seed with small size. Large grains of Hwangkeum-kong were the highest in the number of branch node and number of node. 5. The number of pods and grains per plant of Bangsa-kong with small grain size was larger than the Kwangkyo with large grain size. 6. The yield per 10a for Hwangkeum-kong, Hwangkyo and Bangsa-kong were 226.3kg, 193.0kg and 192.8kg, respectively and they were all statistically different. The yield increases of large grains over small grains in the Hwangkeum-kong, Kwangkyo, and Bangsa-kong were 7.4%, 8.0% and 9.2%, respectively.

  • PDF

다축대각단조(MADF) 가공횟수에 따른 OFC의 미세조직 변화 (Microstructural Changes of OFC according to the Processing Number of Multi-Axial Diagonal Forging (MADF))

  • 김순태;권상철;김다빈;이성;최시훈;정효태
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.347-355
    • /
    • 2018
  • This study investigated the effects of the processing number of multi-axial diagonal forging (MADF) on the microstructural changes of OFC fabricated by MADF processes. The as-extruded OFC was cut to $25mm^3$ cube for the MADF processes. The MADF process consists of plane forging with a thickness reduction of 30% and diagonal forging with a diagonal forging angle of $135^{\circ}$. In order to analyze the microstructural evolutions according to the number of repetitions, 1, 2, 3 and 4 cycles of the MADF process were performed. OFC specimens were successfully deformed without surface cracking for up to 4 cycles of MADF. The grain size, average misorientation and average grain orientation spread (GOS) of MADF processed materials were analyzed using EBSD technique and their Vicker's hardness were also measured. The results showed that MADF process effectively refined the microstructure of OFC with initial average grain size of $84.2{\mu}m$. The average grain sizes of specimens MADF processed for 1, 2, 3, 4 cycles were refined to be $8.5{\mu}m$, $2.2{\mu}m$, $1.5{\mu}m$, $1.1{\mu}m$, respectively. The grain refinement seemed to be saturated when OFC was MADF processed over 2 cycles. In the case of specimens subjected to two or more cycles of MADF, the degree of decrease in average grain size was drastically reduced as the number of cycles increased due to softening phenomena such as dynamic recovery or dynamic recrystallization during processing. The degree of increase in average Vicker's hardness was also dramatically reduced as the number of cycles increased due to the same reason.

다축대각단조(MADF) 가공횟수에 따른 AA1100의 미세조직 변화 (Microstructural Changes of AA1100 According to the Processing Number of Multi-Axial Diagonal Forging (MADF))

  • 권상철;김순태;김다빈;김민성;이성;최시훈;정효태
    • 소성∙가공
    • /
    • 제28권2호
    • /
    • pp.63-70
    • /
    • 2019
  • This study investigates the effects of multi-axial diagonal forging (MADF) processing number on the microstructures of AA1100 fabricated using MADF processes. The cast AA1100 was annealed at $400^{\circ}C$ for 3hrs in $N_2$ atmosphere and cut into $25mm^3$ cubes for the MADF processes. The MADF process consist of plane forging with a thickness reduction of 30% and a diagonal forging with a diagonal forging angle of 135 degrees. In order to analyze the microstructural variations based on the number of repetitions, 1, 2, 3 and 4 cycles of the MADF process were performed. AA1100 specimens were successfully deformed without cracking of the surface for up to 4 cycles of MADF. The grain size, average misorientation and average grain orientation spread (GOS) of MADF processed materials were analyzed using EBSD technique. The results showed that MADF process effectively refined the microstructure of AA1100 with an initial average grain size of $337.4{\mu}m$. The average grain sizes of specimens which were MADF processed for 2, 3, 4 cycles were refined to be $1.9{\mu}m$, $1.6{\mu}m$, $1.4{\mu}m$, respectively. The grain refinement appeared saturated when AA1100 got MADF processed over 2 cycles. When the specimen was subjected to two or more cycles of MADF, the degree of decrease in the average grain size drastically decreased with an increase in the number of cycle due to the softening phenomena such as dynamic recovery or dynamic recrystallization during processing.