Computer aided simulation of spark plasma sintering process (Part 2 : analysis)

스파크 플라스마 소결공정의 전산모사(2부 : 해석)

  • Keum Y.T. (CPRC) ;
  • Jung S.C. (Department of Precision Mechanical Engineering, Graduate School in Hanyang University) ;
  • Jean J.H. (Department of Precision Mechanical Engineering, Graduate School in Hanyang University)
  • 금영탁 (한양대학교 기계공학부) ;
  • 정상철 (한양대학교 일반대학원 정밀기계공학과) ;
  • 전종훈 (한양대학교 일반대학원 정밀기계공학과)
  • Published : 2006.02.01

Abstract

In this Part 2, the grain growth processes of $Al_2O_3$ ceramics is numerically simulated using Monte Carlo method (MCM) and finite element method (FEM) and the pore sizes are analyzed. As the green ceramics whose thermal conductivities in high temperatures are generally low are sintered by the plasma heat and are rapidly cooled, the grain growth of the sintered body in the center is different from that in the outer. Also, even in the same sintering temperature, the pore size differs according to the pressing pressure. In order to prove the difference, the temperature distribution of the sintered body was analyzed using the finite element method and then the grain growth process associated with pressing pressures and relative densities was simulated using Monte Carlo method.

본 2부의 연구에서는 스파크 플라스마 소결의 온도분포, 상대밀도, 입자성장을 해석 하기 위하여 1부 연구의 시뮬레이션 이론을 바탕으로 스파크 플라스마 소결공정을 유한요소법(FEM)과 몬테카를로법(MCM)으로 전산모사하고 실험치와 비교한다. 전산모사를 통하여 소결체의 소결온도가 높을수록 입자성장이 커지고 밀도가 높아져 기계적 성질이 향상되고, 고상 소결에서 몬테카르로 단계가 증가할 수록 기공의 감소와 입자크기의 증대함을 보여 준다.

Keywords

References

  1. L. Gao, J.S. Hong, H. Miyamoto and S.D.D.L. Torre, 'Bending strength and microstructure of $Al_2O_3$ ceramics densified by spark plasma sintering', Journal of European Ceramic Society 20 (2000) 2149 https://doi.org/10.1016/S0955-2219(00)00086-8
  2. S. Hoshii, A. Kojima and M. Goto, 'Rapid baking of graphite powders by the spark plasma sintering method', Letters to the editor/Carbon 38 (2000) 1879
  3. Y.W. Gu, N.H. Loh, K.A. Khor, S.B. Tor and P. Cheang, 'Spark palsma sintering of hydroxyapatite powders', Biomaterials 23 (2002) 37 https://doi.org/10.1016/S0142-9612(01)00076-X
  4. S.W. Wang, L.D. Chen and T. Hirai, 'Densification of $Al_2O_3$ powder using spark plasma sintering', J. Mater. Res. 15(4) (2000)
  5. Paulette Clancy, Steven W Levine and James R. Engstrom, 'A kinetic Monte Carlo study of the growth of Si on Si(100) at varying angles of incident deposition', Surface Science 401 (1998) 112 https://doi.org/10.1016/S0039-6028(97)00904-7
  6. N. Rajmohan and J.A. Szpunar, 'Monte-Carlo simulation of Gross texture development in silicon steel in the presence of MnS particles', Materials Science and Engineering A 289 (2000) 99 https://doi.org/10.1016/S0921-5093(00)00902-3
  7. R. Chakarova, D.E. Oner, I. Zoric and B. Kasemo, 'Monte Carlo simulation of initial Al(111) oxidation', Surface Science 472 (2001) 63 https://doi.org/10.1016/S0039-6028(00)00923-7
  8. Yunus A. Cengel, Heat Transfer, McGraw-Hill (1999)
  9. Daryl L. Logan, 'A first course in the finite element method', third edition, Thomson Learning (1993)
  10. P.P. Incropera and D.P. Dewitt, 'Introduction to heat transfer', Second Edition, John Wiley & Sons, Inc.(1990)
  11. Randall M. German, 'Sintering theory and practice', John Wiley & Sons, Inc. (1996)