• Title/Summary/Keyword: Gradient optimization

Search Result 513, Processing Time 0.024 seconds

Magnetic Field Gradient Optimization for Electronic Anti-Fouling Effect in Heat Exchanger

  • Han, Yong;Wang, Shu-Tao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1921-1927
    • /
    • 2014
  • A new method for optimizing the magnetic field gradient in the exciting coil of electronic anti-fouling (EAF) system is presented based on changing exciting coil size. In the proposed method, two optimization expressions are deduced based on biot-savart law. The optimization expressions, which can describe the distribution of the magnetic field gradient in the coil, are the function of coil radius and coil length. These optimization expressions can be used to obtain an accurate coil size if the magnetic field gradient on a certain point on the coil's axis of symmetry is needed to be the maximum value. Comparing with the experimental results and the computation results using Finite Element Method simulation to the magnetic field gradient on the coil's axis of symmetry, the computation results obtained by the optimization expression in this article can fit the experimental results and the Finite Element Method results very well. This new method can optimize the EAF system's anti-fouling performance based on improving the magnetic field gradient distribution in the exciting coil.

A NOTE ON OPTIMIZATION WITH MORSE POLYNOMIALS

  • Le, Cong-Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.671-676
    • /
    • 2018
  • In this paper we prove that the gradient ideal of a Morse polynomial is radical. This gives a generic class of polynomials whose gradient ideals are radical. As a consequence we reclaim a previous result that the unconstrained polynomial optimization problem for Morse polynomials has a finite convergence.

Optimization of Gradient-index Antireflection Coatings

  • Kim, J. H.;Lee, Y. J.
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.86-88
    • /
    • 2000
  • A sequence of functions are examined for the gradient-index AR thin film between two dielectric media and are used as the starting profiles in optimization to improve AR performance. Sinusoidal functions were quite efficient to use as components of the index change in the optimization. It is shown that there exist a number of gradient-index profiles which exhibit excellent AR-performance after control of the gradient-index profiles.

FIRST ORDER GRADIENT OPTIMIZATION IN LISP

  • Stanimirovic, Predrag;Rancic, Svetozar
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.701-716
    • /
    • 1998
  • In this paper we develop algorithms in programming lan-guage SCHEME for implementation of the main first order gradient techniques for unconstrained optimization. Implementation of the de-scent techniques which use non-optimal descent steps as well as imple-mentation of the optimal descent techniques are described. Also we investigate implementation of the global problem called optimization along a line. Developed programs are effective and simpler with re-spect to the corresponding in the procedural programming languages. Several numerical examples are reported.

Nonlinear optimization algorithm using monotonically increasing quantization resolution

  • Jinwuk Seok;Jeong-Si Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.119-130
    • /
    • 2023
  • We propose a quantized gradient search algorithm that can achieve global optimization by monotonically reducing the quantization step with respect to time when quantization is composed of integer or fixed-point fractional values applied to an optimization algorithm. According to the white noise hypothesis states, a quantization step is sufficiently small and the quantization is well defined, the round-off error caused by quantization can be regarded as a random variable with identically independent distribution. Thus, we rewrite the searching equation based on a gradient descent as a stochastic differential equation and obtain the monotonically decreasing rate of the quantization step, enabling the global optimization by stochastic analysis for deriving an objective function. Consequently, when the search equation is quantized by a monotonically decreasing quantization step, which suitably reduces the round-off error, we can derive the searching algorithm evolving from an optimization algorithm. Numerical simulations indicate that due to the property of quantization-based global optimization, the proposed algorithm shows better optimization performance on a search space to each iteration than the conventional algorithm with a higher success rate and fewer iterations.

Structure Optimization of Solute Molecules via Free Energy Gradient Method

  • Nagaoka, Masataka
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.805-808
    • /
    • 2003
  • Fundamental ideas of the free energy gradient method are briefly reviewed with three applications: the stable structures of glycine and ammonia-water molecule pair in aqueous solution and the transition state (TS) structure of a Menshutkin reaction $NH_3 + CH_3Cl → CH_3NH_3^+ + Cl^-$ in aqueous solution, which is the first example of full TS optimization of all internal degrees of freedom.

GLOBAL CONVERGENCE OF A NEW SPECTRAL PRP CONJUGATE GRADIENT METHOD

  • Liu, Jinkui
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1303-1309
    • /
    • 2011
  • Based on the PRP method, a new spectral PRP conjugate gradient method has been proposed to solve general unconstrained optimization problems which produce sufficient descent search direction at every iteration without any line search. Under the Wolfe line search, we prove the global convergence of the new method for general nonconvex functions. The numerical results show that the new method is efficient for the given test problems.

A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD

  • Yu, Zhensheng;Zang, Jinsong;Liu, Jingzhao
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • In this paper, we develop a nonmonotone spectral memory gradient method for unconstrained optimization, where the spectral stepsize and a class of memory gradient direction are combined efficiently. The global convergence is obtained by using a nonmonotone line search strategy and the numerical tests are also given to show the efficiency of the proposed algorithm.

A new optimization method for improving the performance of neural networks for optimization (최적화용 신경망의 성능개선을 위한 새로운 최적화 기법)

  • 조영현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.61-69
    • /
    • 1997
  • This paper proposes a new method for improving the performances of the neural network for optimization using a hyubrid of gradient descent method and dynamic tunneling system. The update rule of gradient descent method, which has the fast convergence characteristic, is applied for high-speed optimization. The update rule of dynamic tunneling system, which is the deterministic method with a tunneling phenomenon, is applied for global optimization. Having converged to the for escaping the local minima by applying the dynamic tunneling system. The proposed method has been applied to the travelling salesman problems and the optimal task partition problems to evaluate to that of hopfield model using the update rule of gradient descent method.

  • PDF

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF