DOI QR코드

DOI QR Code

Structure Optimization of Solute Molecules via Free Energy Gradient Method

  • Published : 2003.06.20

Abstract

Fundamental ideas of the free energy gradient method are briefly reviewed with three applications: the stable structures of glycine and ammonia-water molecule pair in aqueous solution and the transition state (TS) structure of a Menshutkin reaction $NH_3 + CH_3Cl → CH_3NH_3^+ + Cl^-$ in aqueous solution, which is the first example of full TS optimization of all internal degrees of freedom.

Keywords

References

  1. Computer Modeling of Chemical Reactions in Enzymes andSolutions; Warshel, A.; Wiley: New York, 1991.
  2. Nagaoka, M.; Okuno, Y.; Yoshida, N.; Yamabe, T. Int. J. Quant.Chem. 1994, 51, 519-527. https://doi.org/10.1002/qua.560510617
  3. Nagaoka, M.; Okuno, Y.; Yoshida, N.; Yamabe, T. In The Proceeding of the Third China-Japan Symposium on Theoretical Chemistry; Xiamen, 1994; p 31.
  4. Okuyama-Yoshida, N.; Nagaoka, M.; Yamabe, T. Int. J. QuantumChem. 1998, 70, 95-103. https://doi.org/10.1002/(SICI)1097-461X(1998)70:1<95::AID-QUA7>3.0.CO;2-0
  5. Nagaoka, M.; Okuyama-Yoshida, N.; Yamabe, T. J. Phys. Chem. A 1998, 102, 8202-8208. https://doi.org/10.1021/jp982534g
  6. Okuyama-Yoshida, N.; Nagaoka, M.; Yamabe, T. J. Phys. Chem. 1998, 102,285-292. https://doi.org/10.1021/jp973102t
  7. Okuyama-Yoshida, N.; Kataoka, K.; Nagaoka, M.; Yamabe, T. J.Chem. Phys. 2000, 113, 3519-3524. https://doi.org/10.1063/1.1287785
  8. Hirao, H.; Nagae, Y.; Nagaoka, M. Chem. Phys. Lett. 2001, 348,350-356. https://doi.org/10.1016/S0009-2614(01)01131-9
  9. Nagae, Y.; Ohishi, Y.; Naruse, N.; Nagaoka, M. submitted for publication.
  10. Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426. https://doi.org/10.1063/1.1740409
  11. Singh, U. C.; Brown, F. K.; Bash, P. A.; Kollman, P. A. J. Am.Chem. Soc. 1987, 109, 1607-1604.
  12. Warshel, A.; Weiss, R. M. J. Am. Chem. Soc. 1980, 102, 6218-6226. https://doi.org/10.1021/ja00540a008
  13. Aqvist, J.; Warshel, A. Chem. Rev. 1993, 93, 2523-2544. https://doi.org/10.1021/cr00023a010
  14. Chang, Y.-T.; Miller, W. H. J. Phys. Chem. 1990, 94, 5884-5888. https://doi.org/10.1021/j100378a052

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  2. Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials vol.14, pp.6, 2003, https://doi.org/10.1021/acs.jctc.8b00271
  3. Microscopic Origin of Different Hydration Patterns of para-Nitrophenol and Its Anion: A Study Combining Multiconfigurational Calculations and the Free-Energy Gradient Method vol.122, pp.39, 2003, https://doi.org/10.1021/acs.jpcb.8b06439
  4. Vibrational Spectroscopy in Solution through Perturbative ab Initio Molecular Dynamics Simulations vol.15, pp.8, 2019, https://doi.org/10.1021/acs.jctc.9b00362
  5. Photophysics of Emissive tz C[Isothiazolo‐Cytidine] and tz U[Isothiazolo‐Uridine] Pyrimidine Analogues vol.3, pp.9, 2003, https://doi.org/10.1002/cptc.201900072
  6. Vibrational Sum-Frequency Generation Spectroscopy in the Energy Representation from Dual-Level Molecular Dynamics Simulations vol.124, pp.27, 2003, https://doi.org/10.1021/acs.jpca.0c02901
  7. Solvation Structures and Deactivation Pathways of Luminescent Isothiazole-Derived Nucleobases: tzA, tzG, and tzI vol.124, pp.34, 2003, https://doi.org/10.1021/acs.jpca.0c03398
  8. Free energy gradient for understanding the stability and properties of neutral and charged L-alanine molecule in water vol.319, pp.None, 2003, https://doi.org/10.1016/j.molliq.2020.114109