• Title/Summary/Keyword: Gradient elution

Search Result 250, Processing Time 0.02 seconds

Determination of Isomaltooligosaccharides in Yoghurts by Using HPLC-ELSD (HPLC-ELSD를 이용한 발효유 제품 중의 Isomaltooligosaccharides 분석법 개발)

  • Ko, Jinhyouk;Lee, Moon-Seok;Kwak, Byung-Man;Ahn, Jang-Hyuk;Park, Jong-Su;Kwon, Joong-Ho
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.417-424
    • /
    • 2013
  • A rapid and simple analytical method for the determination of 9 isomaltooligosaccharides (IMO) species in yoghurts was developed using dispersive solid phase extraction (dSPE) clean-up technic and high performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). In this study, 9 IMO were extracted from samples simply with chemical reagent using ISO22662 IDF198 method and additional dSPE clean-up. The optimum instrument conditions for the determination were used carbohydrate ES $5{\mu}$ column with gradient elution of water and acetonitrile and ELS detector. The linearity of this method was expressed as the correlation coefficient ($r^2$), the results of IMO 9 species were shown in 0.9999. LOD and LOQ were respectively 7.9-22.1 mg/kg, 25.9-72.8 mg/kg. The accuracy of intra- and inter-day measurements were in the range from $84.3{\pm}4.5$ to $104.9{\pm}6.5%$, and the preceision of the intra- and inter-day measurements were in the range from 0.8 to 7.7%. The recoveries were from $84.3{\pm}4.5$ to $104.9{\pm}6.5%$. The determination results of IMO 9 species for the 9 yoghurts circulated in the market were in the range from $0.317{\pm}0.007$ to $1.624{\pm}0.050$ g/100 g. The newly developed method is appropriate for the determination of IMO in yoghurts, is a rapid and simple method with excellent resolution in compared with previous method.

Anti-Inflammatory Activity of Three Kinds of Salvia and Its Active Compounds (3종의 배암차즈기에 대한 염증억제 활성 비교 및 활성성분 구명)

  • Shin, Han Jae;Gwak, Hyo Min;Jang, Mi;Park, Si Hwan;Min, Hye Jeong;Lee, Jeong Min;Lee, Moon Yong;Kim, Jong Han;Kim, Sung Won;Han, Chang Kyun;Kim, Seung Hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • Background: Salvia has been widely cultivated for use in flavoring and folk medicines in many countries, including Korea and China. In this study, we investigated the anti-inflammatory activity and the underlying active compounds of Salvia extract and its fractions. Methods and Results: The anti-inflammatory activity was measured by assessing the inhibition of cysteinyl leukotriene production in rat basophilic leukemia (RBL)-2H3 mast cells. Salvia plebeia R. Br. was found to have the most potent inhibitory activity on leukotriene production than S. japonica and S. chanroenica had. Fifty percent ethanol extracts of S. plebeia R. Br. were successively partitioned with n-hexane, methylene chloride, ethyl acetate, 1-butanol and water. The ethyl acetate (EtOAc) fraction showed stronger anti-inflammatory activity than other solvent fractions did. The EtOAc fraction was subjected to silica gel column chromatography elution with a chloroform and methanol gradient system (100 : 1 ${\rightarrow}$ 1 : 1) yielding 10 fractions. Three kinds of fractions (chloroform:methanol = 20 : 1, 10 : 1 and 5 : 1) showed high inhibitory activity on leukotriene production. We confirmed the major compounds with anti-inflammatory activity from S. plebeia R. Br. Conclusions: In this study, the major components of S. plebeia that showed leukotriene production inhibitory activity were isolated using solvent extraction and silica gel column chromatography. Rosmarinic acid, hispidulin and luteolin were identified as the major compounds with anti-inflammatory effect.

Development of an Analytical Method for the Determination of Dexamethasone in Bovine Milk Using Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS를 이용한 우유 중 덱사메타손의 잔류 분석법 개발)

  • Cha, Chun-Nam;Park, Eun-Kee;Yoo, Chang-Yeul;Lee, Sung Joong;Son, Song-Ee;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.418-423
    • /
    • 2017
  • An analytical method for the determination of dexamethasone (DM) in bovine milk samples was developed and validated using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Milk samples were extracted by the liquid-liquid extraction based on acetonitrile. The chromatographic separation was achieved on a reverse phase $C_{18}$ column with gradient elution using a mobile phase of 0.1% formic acid in 95% acetonitrile. The procedure was validated according to the Ministry of Food and Drug Safety guideline determining accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). Mean recoveries of DM from spiked milk samples (25, 125, and 1,250 ng/mL) were 98.9-109.6%, and the relative standard deviation was between 1.7 and 4.4%. Linearity in concentration range of 12.5-1,250 ng/mL was obtained with the correlation coefficient ($r^2$) of 0.9997. LOD and LOQ for the investigated DM were 0.15 and 0.5 ng/mL depending on milk samples, respectively. This method was reliable, sensitive, economical and suitable for routine monitoring of DM residues in bovine milk.

Determination and Isolation of Antioxidative Serotonin Derivatives, N-(p-Coumaroyl)serotonin and N-feruoylserotonin from Safflower Seeds (홍화종자에서 항산화성 Serotonin계 화합물, N-(p-Coumaroyl)serotonin과 N-feruoylserotonin의 분리 및 정량분석)

  • Lee, Kang-Soo;Kim, Yun-Hee;Chung, Nam-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • In the methanol extract from safflower seeds, two kinds of antioxidant were detected by preparative HPLC [$\mu$-Bondapak $C_{18}$ column ($7.8{\times}300\;mm$)]. Two unknown compounds were defined as CA and CB which had peaks at 22.1 min and 24.5 min, respectively. Antioxidant activity was measured by their scavenging ability on the stable tree radical of 1,1-diphenly-2-picrylhydrazyl (DPPH). For bulk extraction of antioxidants, the methanol extract was fractionated with hexan, chloroform, ethyl acetate and butanol. The ethyl acetate traction showing the highest DPPH radical scavenging activity was further purified by silica gel column chromatography to CA and CB. By NMR analysis, CA and CB were identified as N-(p-Coumaroyl)serotonin and N-feruoylserotonin, respectively. The content of N-(p-Coumaroyl)serotonin and N-feruoylserotonin were analyzed by reverse phase HPLC using a $\mu$-Bondapak $C_{18}$ column ($3.9{\times}300\;mm$) with linear gradient elution from 10% acetonitrile to 50% acetonitrile for 30min on UV detector at 300 nm. The contents of N-(p-Coumaroyl)serotonin and N-feruoylserotonin were 4.11 mg/g DW and 7.29 mg/g DW, respectively, and these two DPPH radical scavengers were detected only in the hull of seeds.

Evaluation on Extraction Conditions and HPLC Analysis Method for Bioactive Compounds of Astragali Radix (황기의 추출조건 및 유효성분의 HPLC 분석법 평가)

  • Kim, Geum Soog;Lee, Dae Young;Lee, Seung Eun;Noh, Hyung Jun;Choi, Je Hun;Park, Chun Geun;Choi, Soo Im;Hong, Seung Jae;Kim, Seung Yu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.6
    • /
    • pp.486-492
    • /
    • 2013
  • This study has been conducted to establish the optimal extraction process and HPLC analysis method for the determination of marker compounds as a part of the materials standardization for the development of health functional food materials from Astragali radix. Five extraction conditions including the shaking extraction at room temperature and the reflux extraction at $85^{\circ}C$ with 30%, 50% and 95% ethanol were evaluated. Reflux extraction with 50% ethanol showed the highest extraction yield as $27.27{\pm}2.27%$, while the extraction under reflux with 95% ethanol showed significantly the lowest yield of $10.55{\pm}0.24%$. The quantitative determination methods of calycosin-7-O-${\beta}$-D-glucoside and calycosin as marker compounds of Astragali radix extracts were optimized by HPLC analysis using a Thermo Hypersil column ($4.6{\times}250mm$, $5{\mu}m$) with the gradient elution of water and acetonitrile as the mobile phase at the flow rate of $0.8mLmin^{-1}$ and a detection wavelength of 230nm. The HPLC/UV method was applied successfully to the quantification of two marker compounds in Astragali radix extracts after validation of the method with the linearity, accuracy and precision. The contents of calycosin-7-O-${\beta}$-D-glucoside and calycosin in 50% ethanol extracts by reflux extraction were significantly higher as $1,700.3{\pm}30.4$ and $443.6{\pm}8.4{\mu}g-1$, respectively, comparing with those in other extracts. The results indicate that the reflux extraction with 50% ethanol at $85^{\circ}C$ is optimal for the extraction of Astragali radix, and the established HPLC method are very useful for the evaluation of marker compounds in Astragali radix extracts to develop the health functional material from Astragali radix.

Validation of Analytical Method of Marker Compounds in Extract of Pear Pomace as a Functional Health Ingredient (건강기능식품 원료로서 나주 배박 추출물의 지표성분 분석법 벨리데이션)

  • Cho, Eun-Jung;Bang, Mi-Ae;Cho, Seung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1682-1686
    • /
    • 2015
  • This study was conducted to establish an HPLC analysis method for determination of marker compounds as part of materials standardization for development of health functional food materials from pear pomace. The quantitative determination method of caffeic acid and chlorogenic acid as marker compounds of pear pomace extract (PPE) was optimized by HPLC analysis using a C18 column ($5{\times}250mm$, $5{\mu}m$) with a 0.2% elution gradient of acetic acid and methanol as the mobile phase at a flow rate of 0.8 mL/min and detection wavelength of 330 nm. The HPLC/UV method was applied successfully to the quantification of marker compounds in PPE after validation of the method with linearity, accuracy, and precision. The method showed high linearity of the calibration curve with a coefficient of correlation ($R^2$) of 0.9999, and limit of detection and limit of quantification were $1.14{\mu}g/mL$ (caffeic acid) and $1.61{\mu}g/mL$ (chlorogenic acid) as well as $4.9{\mu}g/mL$ (caffeic acid) and $4.9{\mu}g/mL$ (chlorogenic acid), respectively. Relative standard deviation values from intra- and inter-day precision were less than 3.1% (caffeic acid) and 4.0% (chlorogenic acid), respectively. Recovery rates of caffeic acid and chlorogenic acid at 12.5, 25, and $50{\mu}g/mL$ were 93.66~106.32% and 97.33~105.68%, respectively. An optimized method for extraction of caffeic acid and chlorogenic acid in PPE was established through diverse extraction conditions, and the validation indicated that the method is very useful for evaluation of marker compounds in PPE to develop a health functional food material.

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

Determination of Niacin in Infant Formula by Solid-phase Clean-up and HPLC with Photodiode Array Detector (고체상 정제 및 HPLC/PDA에 의한 영유아식 중 나이아신의 분석)

  • Hong, Jee-Eun;Kim, Mi-Ran;Cheon, Sang-Hee;Chai, Jung-Young;Park, Eun-Ryong;Mun, Chun-Sun;Gwak, In-Shin;Kim, Ok-Hee;Lee, Kwang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.359-363
    • /
    • 2009
  • This study was performed to establish a rapid and simple analytical method for niacin (nicotinic acid and nicotinamide) using HPLC. A pretreatment method for the extraction and clean-up of niacin in infant formula sample and an instrumental condition for HPLC were optimized. Niacin was extracted by 5 mM hexanesulfonate with ultrasonication for 30 min. For the clean-up of the sample, the extract was applied to a HLB cartridge, and then niacin was eluted from the cartridge using 5 mL of 80% methanol after washing with 5 mL of n-hexane. The total recoveries were $83{\sim}104%$ and relative standard deviation were in the range of $1.5{\sim}3.5%$ during the extraction and clean-up process. Niacin was determined by gradient elution with sodium hexanesulfonate/methanol buffer as a mobile phase and a photodiode array detector (260 nm). It showed a high linearity between the content of niacin and the peak area ($r^2$=1.000) in the range of $0.02{\sim}10.0$ mg/L of nicotinic acid and nicotinamide. The detection limit was 0.02 mg/L (0.2 mg/kg in the sample). The method was successfully applied for the determination of niacin in infant formula. Total niacin contents were in the range of $53.5{\sim}140.3$ mg/kg.

Solid-Phase Refolding Technology in Recombinant Proteins Recovery: Application Examples to Various Biopharmaceutical Proteins (유전자재조합 단백질 회수 공정에서의 고체상 재접힘 기술: 여러 바이오의약 단백질에의 적용 사례)

  • Kim, Min Young;Suh, Chang Woo;Kim, Chang Sung;Jo, Tae Hoon;Park, Sang Joong;Choi, Won Chan;Lee, Eun Kyu
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-201
    • /
    • 2005
  • Bioprocessing technologies utilizing 'biorecognition' between a solid matrix and a protein is being widely experimented as a means to replacing the conventional, solution-based technology. Frequently the matrices are chromatographic resins with specific functional groups exposed outside. Since the reactions of and interactions with the proteins occur as they are attached to the solid matrix, this 'solid-phase' processing has distinct advantages over the solution-phase technology. Solid-phase refolding of inclusion body proteins uses ion exchange resins to adsorb denaturant-dissolved inclusion body. As the denaturant is slowly removed from the micromoiety around the protein, it is refolded into a native, three-dimensional structure. Once the refolding is complete, the folded protein can be eluted by a conventional elution technique such as the salt-gradient. This concept was successfully extended to 'EBA (expanded bed adsorption)-mediated refolding,' in which the denaturant-dissolved inclusion body in whole cell homogenate is adsorbed to a Streamline resin while cell debris and other impurity proteins are removed by the EBA action. The adsorbed protein follows the same refolding steps. This solid-phase refolding process shows the potential to improve the refolding yield, reduce the number of processing steps and the processing volume and time, and thus improve the overall process economics significantly. In this paper, the experimental results of the solid-phase refolding technology applied to several biopharmaceutical proteins of various types are presented.

Studies on the Analysis of Benzo(a)pyrene and Its Metabolites on Biological Samples by Using High Performance Liquid Chromatography/Fluorescence Detection and Gas Chromatography/Mass Spectrometry

  • Lee, Won;Shin, Hye-Seung;Hong, Jee-Eun;Pyo, Hee-Soo;Kim, Yun-Je
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.559-565
    • /
    • 2003
  • An analytical method the determination of benzo(a)pyrene (BaP) and its hydroxylated metabolites, 1-hydroxybenzo(a)pyrene (1-OHBaP), 3-hydroxybenzo(a)pyrene (3-OHBaP), benzo(a)pyrene-4,5-dihydrodiol (4,5-diolBaP) and benzo(a)pyrene-7,8-dihydrodiol (7,8-diolBaP), in rat urine and plasma has been developed by HPLC/FLD and GC/MS. The derivatization with alkyl iodide was employed to improve the resolution and the detection of two mono hydroxylated metabolites, 1-OHBaP and 3-OHBaP, in LC and GC. BaP and its four metabolites in spiked urine were successfully separated by gradient elution on reverse phase ODS $C_{18}$ column (4.6 mm I.D., 100 mm length, particle size 5 ㎛) using a binary mixture of MeOH/H₂O (85/15, v/v) as mobile phase after ethylation at 90 ℃ for 10 min. The extraction recoveries of BaP and its metabolites in spiked samples with liquid-liquid extraction, which was better than solid phase extraction, were in the range of 90.3- 101.6% in n-hexane for urine and 95.7-106.3% in acetone for plasma, respectively. The calibration curves has shown good linearity with the correlation coefficients (R²) varying from 0.992 to 1.000 for urine and from 0.996 to 1.000 for plasma, respectively. The detection limits of all analytes were obtained in the range of 0.01-0.1 ng/mL for urine and 0.1-0.4 ng/mL for plasma, respectively. The metabolites of BaP were excreted as mono hydroxy and dihydrodiol forms after intraperitoneal injection of 20 mg/kg of BaP to rats. The total amounts of BaP and four metabolites excreted in dosed rat urine were 3.79 ng over the 0-96 hr period from adminstration and the excretional recovery was less than 0.065% of the injection amounts of BaP. The proposed method was successfully applied to the determination of BaP and its hydroxylated metabolites in rat urine and plasma for the pharmacokinetic studies.