Solid-Phase Refolding Technology in Recombinant Proteins Recovery: Application Examples to Various Biopharmaceutical Proteins

유전자재조합 단백질 회수 공정에서의 고체상 재접힘 기술: 여러 바이오의약 단백질에의 적용 사례

  • Kim, Min Young (Bioprocessing Research Laboratory, Department of Chemical Engineering, Hanyang University) ;
  • Suh, Chang Woo (Biotechnology Research Center, Daewoong Corp.) ;
  • Kim, Chang Sung (Dupont Korea Ltd.) ;
  • Jo, Tae Hoon (Department of Chem. Eng., Univ. of Southern California) ;
  • Park, Sang Joong (CKD Bio Research Institute, CKD Bio Corp.) ;
  • Choi, Won Chan (Quality Control Team, Green Cross Plasma Derivatives, Corp.) ;
  • Lee, Eun Kyu (Bioprocessing Research Laboratory, Department of Chemical Engineering, Hanyang University)
  • Received : 2004.08.31
  • Accepted : 2005.02.20
  • Published : 2005.04.30

Abstract

Bioprocessing technologies utilizing 'biorecognition' between a solid matrix and a protein is being widely experimented as a means to replacing the conventional, solution-based technology. Frequently the matrices are chromatographic resins with specific functional groups exposed outside. Since the reactions of and interactions with the proteins occur as they are attached to the solid matrix, this 'solid-phase' processing has distinct advantages over the solution-phase technology. Solid-phase refolding of inclusion body proteins uses ion exchange resins to adsorb denaturant-dissolved inclusion body. As the denaturant is slowly removed from the micromoiety around the protein, it is refolded into a native, three-dimensional structure. Once the refolding is complete, the folded protein can be eluted by a conventional elution technique such as the salt-gradient. This concept was successfully extended to 'EBA (expanded bed adsorption)-mediated refolding,' in which the denaturant-dissolved inclusion body in whole cell homogenate is adsorbed to a Streamline resin while cell debris and other impurity proteins are removed by the EBA action. The adsorbed protein follows the same refolding steps. This solid-phase refolding process shows the potential to improve the refolding yield, reduce the number of processing steps and the processing volume and time, and thus improve the overall process economics significantly. In this paper, the experimental results of the solid-phase refolding technology applied to several biopharmaceutical proteins of various types are presented.

최근 전통적인 액체상 공정을 대체하는 기술로서 고체 담체와 단백질 사이의 '생물인식' 기능을 이용하는 새로운 생물공정기술이 개발되고 있다. 통상 고체 담체로는 표면에 특정한 기능기가 노출되어 있는 크로마토그래피용 담체를 사용한다. 단백질의 반응이나 상호작용이 단백질이 담체 표면에 부착되어 있는 상태에서 일어나기 때문에 이 '고체상 기술'은 액체상 기술에 비해 뚜렷한 장점을 갖고 있다. 고체상 재접힘은 변성제에 의해 용해된 내포체 형태의 재조합 단백질을 이온교환수지 표면에 흡착시켜 시작한다. 변성제를 단백질 주위로부터 서서히 제거시키면서 고유의 3차 구조로 재접힘시킨다. 재접힘이 완료되면 염 구배와 같은 전통적인 방법에 의해 재접힘된 단백질을 정제된 상태로 용출시킨다. 이 개념은 '확장층 흡착 재접힘'에도 연장 적용된다. 세포파쇄액에 변성제를 첨가하여 용해한 내포체 단백질은 확장층 흡착 크로마토그래피용 Streamline 담체에 흡착되고 세포찌꺼기와 불순 단백질들은 확장층 사이로 빠져 칼럼 밖으로 제거된다. 흡착된 목적 단백질은 고체상 재접힘 방법에 의해 재접힘 된 후 용출된다. 수년간 연구 발전되어 온이 새로운 재접힘 기술은 정제수율 향상, 공정 단계 감축, 공정 시간 및 부피 감소에 따라 생물의약공정의 경제성을 크게 향상시킬 수 있는 것으로 증명되고 있다. 본 논문에서는 실험실에서 수행한 여러 생물의약용 단백질들을 대상으로 한 연구 실험 자료를 바탕으로 고체상 재접힘 기술의 적용 사례를 서술하였다.

Keywords

Acknowledgement

Supported by : (주)녹십자, (주)대웅, 산업자원부, 인하대학교

References

  1. Schonor, E. G., Ellis, L. F. and Shonor, B. E., 'Isolation and Purification of Protein Granules from E. coli cells Overproducing Bovine Growth Hormone,' Bio/Technol., 3, 151-154(1985) https://doi.org/10.1038/nbt0285-151
  2. Lowe, E. G., Rhind, S. K., Sugrue, R. and Marston, F. A. O., 'Solubilization, Refolding and Purification of Eukaryotic Proteins Expressed in E. coli, Protein Purification: Micro to Macro,' 429-442, Alan R. Liss, Inc.(1987)
  3. Bowden, G. A., Paredes, A. M. and Georgiou, G., 'Structure and Morphology of Protein Inclusion Body in Escherichia coli,' Bio/ Technol., 9, 725-734(1991) https://doi.org/10.1038/nbt0891-725
  4. Gekko, K. and Timasheff, S. N., 'Mechanism of Protein Stabilization by Glycerol: Preferential Hydration in Glycerol-Water Mixtures,' Biochemisty, 20(16), 4667-4676(1981) https://doi.org/10.1021/bi00519a023
  5. Badcoe, I., Smith, C., Wood, S., Halsall, D., Holbrook, J., Lund, P. and Clarke, A., 'Binding of a Chaperonin to the Refolding Intermediates of Lactate Dehydrogenase,' Biochemistry, 30(38), 9195- 9200(1991) https://doi.org/10.1021/bi00102a010
  6. Martin, J., Langer, Y., Boteva, R., Schramal, A., Horwich, A. and Hartl, F., 'Chaperionin-Mediated Protein Folding at the Surface of groEL Through a 'Molten Globule'-Like Intermediate,' Nature, 352, 36-42(1991)
  7. Bam, N. B., Cleland, J. L. and Randolph, T. W., 'Molten Globule Intermediate of Recombinant Human Growth Hormone: Stabilization with Surfactants,' Biotechnol. Prog., 12(6), 801-809(1996) https://doi.org/10.1021/bp960068b
  8. Brems, D. N., 'Solubility of Different Folding Conformers of Bovine Growth Hormone,' Biochemistry, 27(12), 4541-4546(1988) https://doi.org/10.1021/bi00412a048
  9. Defellippis, M. R., Alter, L. A., Pekar, A. H., Havel, H. A. and Brems D. N., 'Evidence for a Self-Associating Equilibrium Intermediate During Folding of Human Growth Hormone,' Biochemistry, 32(6), 1555-1562(1993) https://doi.org/10.1021/bi00057a021
  10. Cleland, J. L. and Wang, D. I. C., 'Refolding and Aggregation of Bovine Anhydrase B: Quasi-Elastic Light Scattering Analysis,' Biochemisty, 29(50), 11072-11078(1990) https://doi.org/10.1021/bi00502a009
  11. Cleland, J. L., Hedgepeth, C. and Wang, D. I. C., 'Polyethylene Glycol Enhanced Refolding of Bovine Carbonic Anhydrase B,' J. Biol. Chem., 267(19), 13327-13334(1992)
  12. Cleland, J. L. and Randolph, T. W., 'Mechanism of Polyethylene Glycol Interaction with the Molten Globule Intermediate of Bovine Carbonic Anhydrase B,' J. Biol. Chem., 267(5), 3147- 3153(1992)
  13. Kim, Y. H., 'Direct Quantification of $Interferon-{\alpha}$ Inclusion body in Recombinant E. coli. Fermentor Beer Using Reversed-phase HPLC,' M.S. Thesis, Dept. of Chem. Eng., Hanyang Univ., Seoul, Korea(1995)
  14. Hermann, R., 'Protein Folding, in EPO Applied Technology Series,' 12(7), European Patent Office, Netherlands(1993)
  15. Fischer, B., Summer, I. and Goodenough, P., 'Isolation, Renaturation, and Formation of Disulfide Bonds of Eukaryotic Proteins Expressed in Escherichia coli as Inclusion Bodies,' Biotech. Bioeng., 41(1), 3-13(1993)
  16. Kiefhaber, T., Rudolph, R., Kohler, H.-H. and Buchner, J., 'Protein Aggregation in vitro and in vivo: A Quantitative Model of the Kinetic Competition Between Folding and Aggregation,' Bio/Technol., 9, 825-829(1991) https://doi.org/10.1038/nbt0991-825
  17. Zettlmeissl, G., Rudolph, R. and Jaenicke, R., 'Reconstitution of Lactic Dehydrogenase. Noncovalent Aggregation vs. Reactivation,' Biochemistry, 18(25), 5567-5571(1979) https://doi.org/10.1021/bi00592a007
  18. Buchner, J. and Rudolph, R., 'Renaturation, Purification and Characterization of Recombinant Fab-Fragments Produced in Escherichia coli,' Bio/Technol., 9, 157-162(1991) https://doi.org/10.1038/nbt0291-157
  19. Cleland, J. L. and Wang, D. I. C., 'Cosolvent Assisted Protein Refolding,' Bio/Technol., 8, 274-278(1990)
  20. Creighton, T. E., 'Process for the Production of a Protein,' US Patent No. 4,977,248(1990)
  21. Stempfer, G., Neugebauer, B. H. and Rudolph, R., 'Improved Refolding of Immobilized Fusion Protein,' Nat. Biotechnol., 14(3), 329-334(1996) https://doi.org/10.1038/nbt0396-329
  22. Lee, E. K., Cho, T. H. and Suh, C. W., 'In vitro Refolding of Inclusion Body Proteins Directly from E. coli Homogenate in Expanded Bed Adsorption Chromatography,' Korean J. Biotechnol. Bioeng., 16(2), 146-152(2001)
  23. Psarras, K., Ueda, M., Yamamura, T., Ozawa, S., Kitajima, M., Aiso, S., Komatsu, S. and Seno, M., 'Human Pancreatic RNase1- Human Epidermal Growth Factor Fusion; an Entirely Human 'Immunotoxin Analog' with Cytotoxic Properties Against Squamous Cell Carcinomas', Protein Eng., 11(12), 1285-1292(1998) https://doi.org/10.1093/protein/11.12.1285
  24. Yoon, J. M., Han, S. H., Kown, O. B., Kim, S. H., Park, M. H. and Kim, B. K., 'Cloning and Cytotoxicity of Fusion Proteins of EGF and Angiogenin,' Life Science, 16, 1435-1445(1999)
  25. Hirata, Y. and Orth, A. N., 'Epidermal Growth Factor (Urogastrone) in Human Fluids: Size Heterogeneity,' J. Clin. Endocrinol. Metab., 48, 673-679(1979) https://doi.org/10.1210/jcem-48-4-673
  26. Shapiro, R., Riordan, J. F. and Vallee, B. L., 'Characteristic Ribonucleolytic Activity of Human Angiogenin,' Biochemistry, 25(12), 3527-3532(1986) https://doi.org/10.1021/bi00360a008
  27. Wu, Y. N., Saxena, S. K., Ardelt, W., Gadina, M., Mikulshki, S., Lorenzo, C. D., Alessio, G. D. and Youle, J., 'A Study of the Intracellular Routing of Cytotoxic Ribonucleases,' J. Biol. Chem., 270(29), 17476-17481(1995) https://doi.org/10.1074/jbc.270.29.17476
  28. Soncin, F., Strydom, D. J. and Shapiro, R., 'Interaction of Heparin with Human Angiogenin,' J. Biol. Chem., 272(15), 9818-9824(1997) https://doi.org/10.1074/jbc.272.15.9818
  29. Tice, P. A., Mazsaroff, I., Line, N. T. and Reginer, F. E., 'Effect of Large Sample Loads on Column Lifetime in Preparative-Scale Liquid Chromatography,' J. chromatography, 410, 43-51(1987) https://doi.org/10.1016/S0021-9673(00)90033-5
  30. Lee, Y. S., 'Fermentation and Purification Processes for Fusion Protein of Human Epidermal Growth Factor and Angiogenin from Recombinant E. coli,' M.S. Thesis. Hanyang University, Dept. of Chemical Engineering, Korea(1999)
  31. Lali, A., Kaul, R., Yu, I. and Mattiason, B., 'Purification of LLactate Dehydrogenase from Crude Homogenate of Porcine Muscle by Expanded Bed Affinity Chromatography (EBAC),' Isolation and Purification, 2, 289-300(1997)
  32. Thommes, J., Bader, A., Halfar, M., Karau, A. and Kula, M-R., 'Isolation of Monoclonal Antibodies from cell Containing Hybridoma Broth Using a Protein A Coated Adsorbent in Expaneded beds,' J. Chromatography, 752, 111-122(1996) https://doi.org/10.1016/S0021-9673(96)00504-3
  33. Smith, M. P., Bulmer, M., Hjorth, R. and Titchener-Hooker, N. J., 'A Comparative Engineering Study of the Use of Expanded Bed and Packed Bed Routes for the Recovery of Labile Proteins from Crude Feedstocks,' Proceedings of 5th World Congress of Chemical Engineering, 2, 565-570(1996)
  34. Chang, Y. K. and Chase, H. A., 'Expanded Bed Adsorption for the Direct Extraction of Proteins,' Separation for Biotechnology, 3, 106-112(1994)
  35. Kim, C. S. and Lee, E. K., 'Effect of Operating Parameters On in Vitro Renaturation of a Fusion Protein of Human Growth Hormone and Glutathione S Transferase from Inclusion Body,' Process Biochemistry, 36, 111-117(2000)
  36. Carmeliet, P. and Jain, R. K., 'Angiogenesis in Cancer and Other Diseases,' Nature, 407, 249-257(2000)
  37. Folkman, J. and Shing, Y., 'Angiogenesis', J. Biol. Chem., 267(16), 10931-10934(1992)
  38. Cao, Y., Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., O'Reilly, M. S., Llinas, M. and Folkman J., 'Kringle Domanis of Human Angiostatin,' J. Biol. Chem., 271(46), 29461-29467(1996) https://doi.org/10.1074/jbc.271.46.29461
  39. Angles-Cano, E. and Rojas, G., 'Apolipoprotein (a): Structure- Function Relationship at the Lysine-Binding Site and Plasminogen Activator Cleavage Site,' Biol. Chem., 383, 93-99(2002) https://doi.org/10.1515/BC.2002.009
  40. Trieu, V. N. and Uckun, F. M., 'Apolipoprotein (a), a Link Between Atherosclerosis and Tumor Angiogenesis, ' Biochem. Biophy. Res. Comm., 257(3), 714-718(1999) https://doi.org/10.1006/bbrc.1999.0519
  41. Jang, J. H., Kim, J. S., Park, E. J., Yeum, J. S. and Jung, S. I., Korean Patent No. 10-2002-7003512(2002)
  42. Cho, T. H., Ahn, S. J. and Lee, E. K., 'Refolding of Protein Inclusion Bodies Directly from E. coli Homogenate Using Expanded bed Adsorption Chromatography,' Bioseparation, 10, 189-196(2002) https://doi.org/10.1023/A:1016305603569
  43. MacDonald, N. J., Murad, A. C., Fogler, W. E., Lu, Y. and Sim, K. L., 'The Tumor-Suppressing Activity of Angiostatin Protein Residues Within Kringles 1 to 3,' Biochemical and Biophys. Res. Commu., 264(2), 469-477(1999) https://doi.org/10.1006/bbrc.1999.1486
  44. Ellman, G. L., 'Tissue Sulfhydryl Groups,' Arch. Biochem. Biophys., 82(1), 70-77(1959) https://doi.org/10.1016/0003-9861(59)90090-6
  45. Buchner, J. and Rudolph, R., 'Renaturation, Purification and Characterization of Recombinant Fab-Fragments Produced in Escherichia coli,' Bio/Technology, 9, 157-162(1991) https://doi.org/10.1038/nbt0291-157
  46. Tang, W., Sun, Z. Y., Pannell, R., Gurewich, V. and Liu, J. N., 'An Efficient System for Production of Recombinant Urokinasetype Plasminogen Activator,' Protein Exp. Purif., 11(3), 279-283(1997) https://doi.org/10.1006/prep.1997.0800
  47. Park, S. J., Kang, R., Suh, C. W., Chai, Y. G., Kwon, O. B., Park, S. K. and Lee, E. K., 'Solid-Phase Refolding of Poly-Lysine Tagged Fusion Protein of hEGF and Angiogenin,' Biotechnol. Bioprocess Eng., 7(1), 1-5(2002) https://doi.org/10.1007/BF02935871
  48. Feuser, J., Walter, J., Kula, M. R. and Thommes, J., 'Cell/ Adsorbed Interactions in Expanded Bed Adsorption of Proteins,' Bioseparation, 8, 99-109(1999) https://doi.org/10.1023/A:1008071731987