• 제목/요약/키워드: Gradient boosting

검색결과 240건 처리시간 0.035초

중소 전자상거래 판매상의 전략적 의사결정을 위한 비즈니스 인텔리전스 설계: 프로모션 전략을 중심으로 (Business Intelligence Design for Strategic Decision Making for Small and Midium-size E-Commerce Sellers: Focusing on Promotion Strategy)

  • 이성주;이용현;김진현;이강현;신광섭
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.201-222
    • /
    • 2023
  • 온라인 플랫폼을 통한 전자상거래 활성화에 따라 수많은 중소 판매상들은 수익성 향상을 위해 다양한 노력을 기울이고 있다. 이를 위해서는 프로모션이나 이벤트의 범위와 할인 수준, 품목 등에 대한 전략적 의사결정이 매우 중요하다. 본 연구는 중소 전자상거래 판매상들이 효과적인 프로모션 전략을 수립하기 위한 의사결정을 지원하기 위한 도구를 개발하고자 한다. 프로모션의 시행 여부를 판단하기 위해서는 프로모션에 의한 매출 증대 수준을 예측할 수 있어야 한다. 본 연구에서는 다양한 기계학습기법 중 MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, Linear Regression 모델을 통해 프로모션 시행 후의 매출변화를 예측하기 위한 모델을 개발하였다. 프로모션 데이터가 가진 복잡성과 품목의 특성이 뚜렷한 영향력을 가지는 것으로 확인되었으며, 여러 기법 중 Random Forest 모델과 MLP 모델이 가장 성능이 좋은 것으로 나타났다. 본 연구에서 개발된 방법을 통해 중소 전자상거래 판매상이 시장 변화에 능동적으로 대응하고, 데이터 기반 의사결정을 지원할 수 있을 것이다.

Investigation of pile group response to adjacent twin tunnel excavation utilizing machine learning

  • Su-Bin Kim;Dong-Wook Oh;Hyeon-Jun Cho;Yong-Joo Lee
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.517-528
    • /
    • 2024
  • For numerous tunnelling projects implemented in urban areas due to limited space, it is crucial to take into account the interaction between the foundation, ground, and tunnel. In predicting the deformation of piled foundations and the ground during twin tunnel excavation, it is essential to consider various factors. Therefore, this study derived a prediction model for pile group settlement using machine learning to analyze the importance of various factors that determine the settlement of piled foundations during twin tunnelling. Laboratory model tests and numerical analysis were utilized as input data for machine learning. The influence of each independent variable on the prediction model was analyzed. Machine learning techniques such as data preprocessing, feature engineering, and hyperparameter tuning were used to improve the performance of the prediction model. Machine learning models, employing Random Forest (RF), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM, LGB) algorithms, demonstrate enhanced performance after hyperparameter tuning, particularly with LGB achieving an R2 of 0.9782 and RMSE value of 0.0314. The feature importance in the prediction models was analyzed and PN was the highest at 65.04% for RF, 64.81% for XGB, and PCTC (distance between the center of piles) was the highest at 31.32% for LGB. SHAP was utilized for analyzing the impact of each variable. PN (the number of piles) consistently exerted the most influence on the prediction of pile group settlement across all models. The results from both laboratory model tests and numerical analysis revealed a reduction in ground displacement with varying pillar spacing in twin tunnels. However, upon further investigation through machine learning with additional variables, it was found that the number of piles has the most significant impact on ground displacement. Nevertheless, as this study is based on laboratory model testing, further research considering real field conditions is necessary. This study contributes to a better understanding of the complex interactions inherent in twin tunnelling projects and provides a reliable tool for predicting pile group settlement in such scenarios.

부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출 (Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data)

  • 박서희;김미애;임정호
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.321-335
    • /
    • 2021
  • 미세먼지 (PM10) 및 초미세먼지 (PM2.5)는 인체에 흡수 가능하여 호흡기 질환 및 심장 질환과 같이 인체건강에 악영향을 미치며, 심각할 경우 조기 사망에 영향을 줄 수 있다. 전 세계적으로 현장관측기반의 모니터링을 수행하고 있지만 미 관측지역에 대한 대기질 분포의 공간적인 한계점이 존재하여 보다 광범위한 지역에 대한 지속적이고 정확한 모니터링이 필요한 상황이다. 위성기반 에어로졸 정보를 사용함으로써 이러한 현장 관측자료의 한계점을 극복할 수 있다. 따라서 본 연구에서는 다양한 위성 및 모델자료를 활용하여 2019년도에 대해 한 시간 단위의 지상 PM10 및 PM2.5 농도를 추정하였다. GOCI 위성의 관측영역을 포함하는 동아시아 지역에 대해 트리 기반 앙상블 방법을 사용하는 Boosting 기법인 GBRTs (Gradient Boosted Regression Trees)와 LightGBM (Light Gradient Boosting Machine)을 활용하여 모델을 구축하였다. 또한, 기상변수 및 토지피복변수의 사용유무에 따른 모델의 성능을 비교하기 위해 두 가지 festure set으로 나누어 테스트하였다. 두 기법 모두 주요 변수인 AOD (Aerosol Optical Depth), SSA (Single Scattering Albedo), DEM (Digital Eelevation Model), DOY (Day of Year), HOD (Hour of Day)와 기상변수 및 토지피복변수를 함께 사용한 Feature set 1을 사용하였을 때 높은 정확도를 보였다. Feature set 1에 대해 GBRT 모델이 LightGBM에 비해서약 10%의 정확도 향상을 보였다. 가장 정확도가 높았던 기상 및 지표면 변수를 포함한 Feature set1을 사용한 GBRT기반 모델을 최종모델로 선정하였으며 (PM10: R2 = 0.82 nRMSE = 34.9%, PM2.5: R2 = 0.75 nRMSE = 35.6%), 계절별 및 연평균 PM10 및 PM2.5 농도에 대한 공간적인 분포를 확인해본 결과, 현장관측자료와 비슷한 공간 분포를 보였으며, 국가별 농도 분포와 계절에 따른 시계열 농도 패턴을 잘 모의하였다.

기계학습을 활용한 특허수명 예측 및 영향요인 분석 (Prediction of patent lifespan and analysis of influencing factors using machine learning)

  • 김용우;김민구;김영민
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.147-170
    • /
    • 2022
  • 특허의 사적 가치(private value)를 나타내는 특허수명 추정은 오래전부터 연구되었으나 추정과정에서 선형모델에 의존하는 경우가 대부분이었고, 기계학습 방법을 사용하더라도 변수 간 관계에 대한 해석이나 설명이 부족하였다. 본 연구에서는 특허의 생존 기간이 특허의 가치를 대리한다는 기존 연구결과를 바탕으로 특허 등록 이후의 생존 기간(연장횟수) 예측을 통해 특허의 가치를 추정한다. 이를 위해 1996~2017년까지 미국 특허청(USPTO)에 출원하여 등록된 특허 4,033,414개를 수집하였다. 특허수명을 예측하기 위해 기존 연구에서 특허수명에 영향을 미친다고 밝혀진 특허의 특성, 특허의 소유자 특성, 특허의 발명가 특성을 반영할 수 있는 다양한 변수가 사용되었다. 서로 다른 4개의 모델(Ridge Regression, Random Forest, Feed-forward Neural Network, Gradient Boosting Models)을 생성하고, 모델 학습 과정에서는 5-fold Cross Validation으로 초매개변수 조정이 이루어졌다. 이후 생성된 모델의 성능을 평가하고 특허수명을 추정할 수 있는 예측변수의 상대적 중요도를 제시하였다. 또한, 성능이 우수했던 Gradient Boosting Model을 기반으로 Accumulated Local Effects Plot을 제시하여 예측변수와 특허수명 간 관계를 시각적으로 나타내었다. 마지막으로 모델에 의해서 평가된 개별 특허의 평가 근거를 제시하기 위하여 Kernal SHAP(SHapley Additive exPlanations)을 적용하고 특허평가 시스템에의 적용 가능성을 제시한다. 본 연구는 기존에 특허수명을 추정하는 연구에 누적적으로 기여한다는 점 그리고 선형성을 바탕으로 진행된 기존 특허수명 추정 연구들의 한계를 보완하고 복잡한 비선형 관계를 설명가능한 방식으로 제시하였다는 점에서 학문적 의의가 있다. 또한, 개별 특허의 평가 근거를 도출하는 방법을 소개하고 특허평가 시스템에의 적용 가능성을 제시하였다는 점에서 실무적 의의가 있다.

머신러닝을 활용한 코스닥 관리종목지정 예측 (Predicting Administrative Issue Designation in KOSDAQ Market Using Machine Learning Techniques)

  • 채승일;이동주
    • 아태비즈니스연구
    • /
    • 제13권2호
    • /
    • pp.107-122
    • /
    • 2022
  • Purpose - This study aims to develop machine learning models to predict administrative issue designation in KOSDAQ Market using financial data. Design/methodology/approach - Employing four classification techniques including logistic regression, support vector machine, random forest, and gradient boosting to a matched sample of five hundred and thirty-six firms over an eight-year period, the authors develop prediction models and explore the practicality of the models. Findings - The resulting four binary selection models reveal overall satisfactory classification performance in terms of various measures including AUC (area under the receiver operating characteristic curve), accuracy, F1-score, and top quartile lift, while the ensemble models (random forest and gradienct boosting) outperform the others in terms of most measures. Research implications or Originality - Although the assessment of administrative issue potential of firms is critical information to investors and financial institutions, detailed empirical investigation has lagged behind. The current research fills this gap in the literature by proposing parsimonious prediction models based on a few financial variables and validating the applicability of the models.

Form-finding of lifting self-forming GFRP elastic gridshells based on machine learning interpretability methods

  • Soheila, Kookalani;Sandy, Nyunn;Sheng, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.605-618
    • /
    • 2022
  • Glass fiber reinforced polymer (GFRP) elastic gridshells consist of long continuous GFRP tubes that form elastic deformations. In this paper, a method for the form-finding of gridshell structures is presented based on the interpretable machine learning (ML) approaches. A comparative study is conducted on several ML algorithms, including support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), random forest (RF), AdaBoost, XGBoost, category boosting (CatBoost), and light gradient boosting machine (LightGBM). A numerical example is presented using a standard double-hump gridshell considering two characteristics of deformation as objective functions. The combination of the grid search approach and k-fold cross-validation (CV) is implemented for fine-tuning the parameters of ML models. The results of the comparative study indicate that the LightGBM model presents the highest prediction accuracy. Finally, interpretable ML approaches, including Shapely additive explanations (SHAP), partial dependence plot (PDP), and accumulated local effects (ALE), are applied to explain the predictions of the ML model since it is essential to understand the effect of various values of input parameters on objective functions. As a result of interpretability approaches, an optimum gridshell structure is obtained and new opportunities are verified for form-finding investigation of GFRP elastic gridshells during lifting construction.

XGBoost 기반 상수도관망 센서 위치 최적화 (Optimal Sensor Location in Water Distribution Network using XGBoost Model)

  • 장혜운;정동휘
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.217-217
    • /
    • 2023
  • 상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.

  • PDF

수환경 유출 유해화학물질 감지 및 식별에 관한 머신러닝 기법 적용 연구 (A study on the application of machine learning for the detection of hazardous chemicals in the water environment)

  • 남수한;권시윤;권재현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.163-163
    • /
    • 2021
  • 하천에서의 화학사고는 자연적 및 인위적인 원인으로 인해 발생할 수 있으며, 이러한 화학사고가 발생하게 되면 수환경 변화를 야기해 생태계나 인간에게 악영향을 발생시킬 수 있어 신속한 초기대응이 필요하다. 하천으로 유입된 화학물질의 평가에 대한 연구는 활발하게 진행되고 있지만, 화학사고 초기대응을 위한 연구는 미비한 실정이다. 초기대응을 위해서는 현장에서 측정이 용이한 지표를 활용해야하며, 이 지표를 이용해 유출된 화학물질에 대한 정보를 취득 할 수 있어야 한다. 하천의 주요 지점에는 pH 및 EC 등을 실시간으로 측정하는 자동측정망을 운영하고 있는데, 이러한 측정항목들을 지표로 활용한다면 하천 화학사고 대응을 위한 중요한 기초자료로 활용될 수 있을 것이다. 또한 측정된 데이터를 머신러닝 기법을 적용한다면 화학사고 발생 시 초기대응을 위한 기초자료로 활용될 수 있을 것이다. 본 연구에서는 분석한 유해화학물질은 총 26종이며, pH 및 EC를 화학물질들의 특성을 파악하기 위한 대체지표로 선정하였다. 화학물질의 농도변화에 따른 대체지표 변화를 측정하였으며, 실험결과를 바탕으로 성질이 유사한 화학물질들을 Group별로 분류하여 데이터베이스를 구축하였다. 구축된 데이터베이스를 바탕으로 머신러닝 기법인 Decision Tree, Random Forest, Gradient Boosting, XG Boosting에 적용해 각 알고리즘에 대한 성능 평가를 진행하여 가장 우수한 성능의 머신러닝 기법을 선정한다. 본 연구 결과를 바탕으로 선정된 머신러닝 기법을 활용한다면 향수 수환경 화학사고 발생 시 유출된 유해화학물질에 대한 정보를 제공할 수 있으며 그에 따른 신속한 대응의 기초자료로 활용될 수 있을 것으로 판단된다.

  • PDF

드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석 (Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.589-595
    • /
    • 2017
  • MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.