• Title/Summary/Keyword: Governing Equation

Search Result 1,286, Processing Time 0.029 seconds

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

Numerical Investigation of Transverse Dispersion in Natural Channels (자연하천에서 오염물질의 횡확산에 관한 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.151-162
    • /
    • 1995
  • A two-dimensional stream tube dispersion model is developed to simulate accurately transverse dispersion processes of pollutants in natural channels. Two distinct features of the stream tube dispersion model derived herein are that it employs the transverse cumulative discharge as an independent variable replacing the transverse distance and that it is developed in a natural coordinate system which follows the general direction of the channel flow. In the model studied, Eulerian-Lagrangian method is used to solve the stream tube dispersion equation. The stream tube dispersion equation is decoupled into two components by the operator-splitting approach; one is governing advection and the other is governing dispersion. The advection equation has been solved using the method of characteristics and the results are interpolated onto Eulerian grid on which the dispersion equation is solved by centered difference method. In solving the advection equation, cubic spline interpolating polynomials is used. In the present study, the results of the application of this model to a natural channel are compared with a steady-state flow measurements. Simulation results are in good accordance with measured data.

  • PDF

Analytic Error Caused by the Inconsistency of the Approximation Order between the Non Local Boundary Condition and the Parabolic Governing Equation (포물선 지배 방정식과 비국소적 경계조건의 근사 차수 불일치에 의한 해석적 오차)

  • Lee Keun-Hwa;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.229-238
    • /
    • 2006
  • This paper shows the analytic error caused by the inconsistency of the approximation order between the non local boundary condition (NLBC) and the parabolic governing equation. To obtain the analytic error, we first transform the NLBC to the half space domain using plane wave analysis. Then, the analytic error is derived on the boundary between the true numerical domain and the half space domain equivalent to the NLBC. The derived analytic error is physically expressed as the artificial reflection. We examine the characteristic of the analytic error for the grazing angle, the approximation order of the PE or the NLBC. Our main contribution is to present the analytic method of error estimation and the application limit for the high order parabolic equation and the NLBC.

A Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis (스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.218-232
    • /
    • 2012
  • In a spool valve analysis, the Reynolds equation is commonly used to investigate the lubrication characteristics. However, the validity of the Reynolds equation is questionable in a spool valve analysis because cavitation often occurs in the groove and the depth of the groove is much higher than the clearance in most cases. Therefore, the validity of the Reynolds equation in a spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and the Navier-Stokes equation. Dimensionless parameters are determined from a nondimensional form of the governing equations. The differences between the lateral force, friction force, and volume flow rate (leakage) obtained by the Reynolds equation and those obtained by the Navier-Stokes equation are discussed. It is shown that there is little difference (less than 10%), except in the case of a spool valve with many grooves where no cavitation occurs in the grooves. In most cases, the Reynolds equation is effective for a spool valve analysis under a no cavitation condition.

Resonance Characteristics of a Piezoelectric Sheel Transducer (원호형 압전 변환기의 공진 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.332-335
    • /
    • 2007
  • This paper presents a theoretical approach to describe the vibration characteristics of a piezoelectric shell transducer. Governing equations for the motion of the piezoelectric shell are classified and simplified according to the boundary conditions. Applied mechanical and electrical boundary conditions have yielded each characteristic equation for circumferential, longitudinal, and radial motions of the piezoelectric shell transducer. Theoretical calculations of the resonance frequencies have been compared with the results obtained by the experiment and have shown a good agreement.

  • PDF

A Numerical Study on the Flow around a Rudder using Blowing Effect (선박의 타 주위 유동 및 분사효과에 관한 수치적 연구)

  • Park Je-Jun;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.185-190
    • /
    • 1998
  • A Numerical simulation on the flow around a Rudder with blowing is performed by Finite Volume Method. The governing equations are three dimensional incompressible Navier-Stokes equation and Continuity equation, Flow field around a finite Rudder including tip vortex is simulated and the change of the lift force by blowing is analyzed.

  • PDF

Computational analysis of cancer angiogenesis using two dimensional model (2차원 모델을 이용한 암의 혈관생성에 대한 수치적 연구)

  • Shim Eun Bo;Ko Hyung Jong;Deisboeck Thomas
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.709-710
    • /
    • 2002
  • Cancer angiogenesis is simulated using a two dimensional model. Governing equation of angiogenesis is a TAE (Tumor angiogenesis factor) conservation equation in time and space. A stochastic process model is utilized to simulate vessel formation, proliferation, and migration to a cancer pellet. Numerical results are presented especially in case of growing cancer.

  • PDF

Viscous Flow Analysis of the Waterjet Duct (물분사 추진기 관내 점성유동해석)

  • 왕정용;전호환;박일룡;차상명
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In the present paper, the numerical calculations for the viscous duct flow of water jet propulsion systems ship are carried out. The governing equation, incompressible Navier-Stokes equation, is discretized and analysed by a Method with the stcandard turbulence modeling. For the calculations the duct flow which h e intake flows disturbed by the ship, the results dcuhted by the potenti used Numerical results show fairly good agreement with the experimental data

  • PDF

Eigenvalue design sensivity analysis of structure using continuum method (연속법에 의한 판구조 고유진동수의 민감도 해석)

  • 이재환;장강석;신민용
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF

Numerical optimization studies of a fire fighting robot cooling system (소방로봇 냉각시스템의 최적화를 위한 수치해석)

  • Lim, Joong-Yeon;Yu, Myoung-Youl;Kim, Jong-Kwon;Lee, Hyun-Geun;Kim, Jun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.690-694
    • /
    • 2008
  • In this presentation, we study numerically an optimization problem of a fire fighting robot cooling system. The governing equation for the system is the unsteady heat equation with source term. We use a multigrid method for numerical solutions in three-dimensional space. We investigated the effects of various parameters and the results will be presented.

  • PDF