• Title/Summary/Keyword: Golf ball

Search Result 106, Processing Time 0.021 seconds

A development of automatic detecting equipment for rotation axis of golf ball (골프공 회전 무게중심 검출 시스템)

  • Lee, Jae-woong;Hyun, Woong-keun;Oh, Jun-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.540-545
    • /
    • 2016
  • Many golf balls have wrong rotation axis owing to bad production and scratch. A flying golf ball makes sliced or curved motion mainly to owing the wrong rotation axis of golf ball. Dimples of golf ball make a golf ball higher and more straight flying. When we hit a golf ball by driver or iron club, the dimpled ball flies straight and rotates as well. While the ball flying, the rotating axis of the ball convergence. And this makes the ball motion curved. If we hit a golf ball in direction of the rotation axis, the flying ball makes straight motion. In this paper, we develop a control system to detect convergence axis and time of flying golf ball based on vision system. To show validity of the developed system, We experimented several case for dimpled golf balls.

  • PDF

Analysis of Golf Ball Mobility and Balancing based on IoT Sports Environments

  • Lee, Tae-Gyu
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • Recently, IoT researches using sensor data based on embedded networks in various fields including healthcare and sports have been continuously attempted. This study analyzes golf ball mobility to support IoT application in golf sports field. Generally, since the difference in density occurs due to the condition of the inner material and the abnormal state at the time of the outer skin joining during the manufacturing of the golf ball, the weight of each subset is equal for any two points with the same radius in the sphere cannot be guaranteed. For this reason, the deflected weight of the sphere has the undesirable effect of hitting the ball in a direction in which the weight of the ball is heavy. In this study, it is assumed that there is a unique center of gravity of the ball, and even if the golf ball cannot be manufactured perfectly, it wants to establish the basic principle to accurately recognize or mark the putting line based on the center of gravity. In addition, it is evaluated how the mobility of the golf ball with a deviation from the center of gravity of the golf ball affects the progress path (or movement direction) and the moving distance (or carry distance) after the golfer hits. The basic model of the mobility of the golf ball can help the golfer exercise model and the correlation analysis. The basic model of the mobility of the golf ball can help the golfer exercise model and the correlation analysis.

A Visual Detecting System for The Rotation Axis of Golf Ball (영상 기반 회전 골프공 무게중심 검출 시스템)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.411-416
    • /
    • 2019
  • In this paper, we describe a measurement system based on vision for detecting the rotation axis of dimpled golf ball. Some golf balls have wrong rotation axis owing to bad production and scratch. A flying golf ball makes sliced or curved motion mainly to owing the wrong rotation axis of golf ball. Dimples of golf ball make a golf ball higher and more straight flying. When we hit a golf ball by driver or iron club, the dimpled ball flies straight and rotates as well. While the ball flying, the rotating axis of the ball convergence. And this makes the ball motion curved. If we hit a golf ball in direction of the rotation axis, the flying ball makes straight motion. In this paper, we develop a control system to detect convergence axis and time of flying golf ball based on vision system. To show validity of the developed system, We experimented several case for dimpled golf balls.

Method for Measuring of Golf Ball's Speed Using The Law of Conservation of Momentum (운동량 보존 법칙을 이용한 골프공의 속도 측정 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.71-78
    • /
    • 2013
  • In this paper, the golf club head hit the golf ball moves at a constant velocity, then move in the same direction at a constant velocity of the golf club head, the velocity of the golf ball was hitting and flying the golf ball is calculated. If velocity is different before you hit the golf ball, each of the velocity of the golf ball is calculated. The purpose of this paper is to make it easy to find out the velocity of a club's head, the mass of a golf ball, the velocity or the direction of a golf ball after impact in playing golf. The results of the experiment are represented in tables and figures. And we also propose the comparison analysis between our research and other traditional ones, the implications, and futhur studies in the future. The results of this study, unlike other studies, it was can be seen that measurements of several factors superior to the measurement of the velocity of the golf ball.

On dynamic flight response of golf ball containing nanoparticles for improving quality

  • Yuwei Du;Guowen Ai;M. Kaffash
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.579-585
    • /
    • 2023
  • This research delves into the intricate dynamics of the flight response exhibited by a golf ball that incorporates nanoparticles with the goal of enhancing its overall quality. The golf ball is meticulously modeled utilizing beam elements, and the impact of nanoparticles is intricately captured through the application of the Halpin-Tsai theory. Employing a numerical solution, the study thoroughly explores the flight response of the golf ball, taking into account the nuanced effects of the embedded nanoparticles. By scrutinizing the aerodynamic characteristics through advanced simulations, this investigation aims to provide valuable insights that could potentially revolutionize the design and performance of golf equipment, offering a pathway towards superior quality and enhanced functionality in the realm of golf ball technology. Results show that increase in the volume percent of nanoparticles, improves the flight response of the golf ball.

Measuring The Speed of The Golf Ball after Impact (임팩트 후 골프공의 속도 측정)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Kim, Hee-Ae;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.129-131
    • /
    • 2013
  • In this paper, a golf club head strikes the golf ball moves at a constant speed. Then the head of a golf club moves at a constant speed in the same direction. Then calculate the speed of the golf ball to hit a golf ball flying. It calculate the speed of the golf ball is different for each speed before hitting the golf ball.

  • PDF

Golf Club Fitting Using Robot Machine Data (로봇머신 데이터를 이용한 골프 클럽 피팅)

  • Park, Sung-Jin;Jun, Jai-Hong;Park, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • The purpose of this study was to suggest the proper shaft and head fitting methods of the golf club to increase the flight distance of the golf ball. Rotations per minute of the golf ball(RPM), ratio of Ball speed to club head speed(T-Ratio) and launch angle right after impact(LA), which are directly related to ball flight distance, were measured using Spectra with shutter speed of 1/1000sec at the constant head speed of 95mph which was controlled by robot golf swing machine. In order to investigate the effect of club shaft to the 3 selected variables, 10 shafts were used to make ten test clubs with one controlled club head which is the most commonly used by golf players. To measure the effect of the club head to the 3 selected variables, 6 golf club heads which are most commonly used by golfers were selected to make 6 test clubs with a controlled shaft which is one of the best known by players. The shafts and the heads were identified by statistical analysis to increase or decrease the RPM, T-ratio and LA. A proper fitting method of the selected shafts and the club head was suggested to increase the ball flight distance in golf.

A Study on Golf Ball Spin Mechanism at Impact (골프 공의 충돌 시 스핀 생성 원리 연구)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.456-463
    • /
    • 2007
  • It is important to improve the initial launch conditions of golf ball at impact between golf club and ball to get a long flight distance. The flight distance is greatly influenced by the initial launch conditions such as ball speed, launch angle and back spin rate. It is also important to analyze the mechanism of ball spin to improve the initial conditions of golf ball. Back spin rate is created by the contact time and force. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of ball, and the tangential force creates the spin. Especially, the tangential force is known to take either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail in the literature. In this paper, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and time at impact between golf club head and ball are computed using FEM and compared with previous results. In addition, we investigate the impact phenomenon between golf club head and ball by FEM and clarify the mechanism of ball spin creation accurately, particularly focusing on the effect of negative tangential force on ball spin rate.

A Study on Golf Ball Spin Mechanism at Impact (골프 공의 충돌 시 스핀 생성 원리 연구)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1017-1022
    • /
    • 2007
  • It is important to improve the initial launch conditions of golf ball at impact between golf club and ball to get a long flight distance. The flight distance is greatly influenced by the initial launch conditions such as ball speed, launch angle and back spin rate. It is also important to analyze the mechanism of ball spin to improve the initial conditions of golf ball. Back spin rate is created by the contact time and force. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of ball, and the tangential force creates the spin. Especially, the tangential force is known to take either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail in the literature. In this paper, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and time at impact between golf club head and ball are computed using FEM and compared with previous results. In addition, we investigate the impact phenomenon between golf club head and ball by FEM and clarify the mechanism of ball spin creation accurately, particularly focusing on the effect of negative tangential force on ball spin rate.

  • PDF

Comparison of Kinematic Variables of the Club Head, Golf Ball and Body Alignment according to Swing Plane during Golf Driver Swing (골프 드라이버 스윙 시 스윙 플레인에 따른 클럽 헤드 및 골프볼의 운동학적 변인과 신체 정렬 변인의 비교 분석)

  • Young-Tae, Lim;Moon-Seok, Kwon;Jae-Woo, Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: The purpose of this study was to analyze the effects of club head and golf ball kinematics and body alignment according to the swing plane during golf driver swing. Method: Sixteen college golfers participated in this study. Kinematic data of the club head and golf ball were collected using golf swing analysis system (Trackman Ver. 3e). The body alignment variables were collected using 8 motion capture system. An Independent samples t-test was used for comparison between the Out-to-In group and In-to-Out group, and the statistical significance level was set at .05. Results: For the club head related variables, club path and club face angle showed higher values in Out-to-In swing plane than In-to-Out swing plane. For the kinematic variables of the golf ball, the total distance showed a higher value in the In-to-Out swing plane than that of the Out-to-In swing plane. For the body alignment, the In-to-Out swing plane showed higher values than the Out-to-In swing plane for the pelvis rotation angle and trunk rotation angle. Conclusion: This study suggest that it would be more effective to use the In-to-Out swing plane for increasing the total distance during the golf driver swing.