DOI QR코드

DOI QR Code

On dynamic flight response of golf ball containing nanoparticles for improving quality

  • Yuwei Du (College of Leisure and Digital Sports, Guangzhou Sport University) ;
  • Guowen Ai (School of Physical Education, Hainan Normal University) ;
  • M. Kaffash (School of Mechanical Engineering, Malaya University)
  • Received : 2023.02.06
  • Accepted : 2023.11.15
  • Published : 2023.12.25

Abstract

This research delves into the intricate dynamics of the flight response exhibited by a golf ball that incorporates nanoparticles with the goal of enhancing its overall quality. The golf ball is meticulously modeled utilizing beam elements, and the impact of nanoparticles is intricately captured through the application of the Halpin-Tsai theory. Employing a numerical solution, the study thoroughly explores the flight response of the golf ball, taking into account the nuanced effects of the embedded nanoparticles. By scrutinizing the aerodynamic characteristics through advanced simulations, this investigation aims to provide valuable insights that could potentially revolutionize the design and performance of golf equipment, offering a pathway towards superior quality and enhanced functionality in the realm of golf ball technology. Results show that increase in the volume percent of nanoparticles, improves the flight response of the golf ball.

Keywords

Acknowledgement

This work was supported by XGQN202311----A study on the cross-boundary fusion selection of tennis and golf players from the anthropometric perspective

References

  1. Belarbi, M.O., Khechai, A., Bessaim, A., Houari, M.S.A., Garg, A., Hirane, H. and Chalak, H. (2021), "Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(11), 2482-2504. https://doi.org/10.1177/14644207211005096
  2. Benaberrahmane, I., Benyoucef, S., Sekkal, M., Mekerbi, M., Bouiadjra, R.B., Selim, M.M., Tounsi, A., Hussain, M.J.G. and Engineering (2021), "Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation", Geomech. Eng., 25(5), 383-394. http://doi.org/10.12989/gae.2021.25.5.383.
  3. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://doi.org/10.12989/anr.2019.7.5.351.
  4. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2021a), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790.
  5. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
  6. Dong, D.T., Nam, V.H., Trung, N.T., Phuong, N.T. and Hung, V.T. (2020), "Nonlinear thermomechanical buckling of sandwich FGM oblique stiffened plates with nonlinear effect of elastic foundation", J. Thermoplast. Compos. Mater., 35(10), 1441-1467. https://doi.org/10.1177/0892705720935957.
  7. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  8. Farrokhian, A. (2020), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel Compos. Struct., 35(1), 1-12. http://doi.org/10.12989/scs.2020.35.1.001.
  9. Farrokhian, A. (2020), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34(5), 733-742. http://doi.org/10.12989/scs.2020.34.5.733.
  10. Hadji, L., Bernard, F., Safa, A. and Tounsi, A.J.A.i.M.R. (2021), "Bending and free vibration analysis for FGM plates containing various distribution shape of porosity", Adv. Mater. Res., 10(2), 115. http://doi.org/10.12989/amr.2021.10.2.115.
  11. Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
  12. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020a), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  13. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020b), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  14. Kocaturk, T. and Akbas, S. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46, 417-431, https://doi.org/10.12989/sem.2013.46.3.417
  15. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. . http://doi.org/10.12989/anr.2019.7.3.181.
  16. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  17. Nam, V.H., Trung, N.T., Phuong, N.T., Duc, V.M. and Hung, V.T. (2020), "Nonlinear torsional buckling of functionally graded carbon nanotube orthogonally reinforced composite cylindrical shells in thermal environment", Int. J. Appl., 12(7), 2050072. https://doi.org/10.1142/S1758825120500726.
  18. Nguyen, T.P., Nguyen-Thoi, T., Tran, D.K., Ho, D.T. and Vu, H.N. (2020), "Nonlinear vibration of full-filled fluid corrugated sandwich functionally graded cylindrical shells", J. Vib. Control., 27(9-10), 1020-1035. https://doi.org/10.1177/1077546320936537.
  19. Ninh, D.G., Tien, N.D., Hoang, V.N.V. and Bich, D.H. (2020), "Vibration of cylindrical shells made of three layers W-Cu composite containing heavy water using Flugge-Lur'e-Bryrne theory", Thin Wall. Struct., 146, 106414. https://doi.org/10.1016/j.tws.2019.106414.
  20. Ninh, D.G., Quan, N.M. and Hoang, V.N.V. (2021), "Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation", Mech. Adv. Mater. Struct., 1-23. https://doi.org/10.1080/15376494.2021.1934763.
  21. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429 . http://doi.org/10.12989/anr.2019.7.6.419.
  22. Solmaz, M.Y. and Topkaya, T. (2020), "The flexural fatigue behavior of honeycomb sandwich composites following low velocity impacts", Appl. Sci., 10(20), 7262. https://doi.org/10.3390/app10207262.
  23. Thi Phuong, N., Hoai Nam, V. and Thuy Dong, D. (2018), "Nonlinear vibration of functionally graded sandwich shallow spherical caps resting on elastic foundations by using first-order shear deformation theory in thermal environment", J. Sandw. Struct. Mater., 22(4), 1157-1183. https://doi.org/10.1177/1099636218782645.
  24. Tho Hung, V., Thuy Dong, D., Thi Phuong, N., Ngoc Ly, L., Quang Minh, T., Trung, N.T. and Hoai Nam, V. (2020), "Nonlinear buckling behavior of spiral corrugated sandwich FGM cylindrical shells surrounded by an elastic medium", Materials, 13(8). https://doi.org/10.3390/ma13081984.
  25. Topkaya, T. and Solmaz, M. (2016), "fatigue behavior of honeycomb sandwich composites under flexural and buckling loading", Proceedings of the 6th International Conference on Advanced Materials and Systems (ICAMS 2016), 20-22, Bucharest, Romania, October.
  26. Topkaya, T. and Solmaz, M. (2018), "Investigation of low velocity impact behaviors of honeycomb sandwich composites", J. Mech. Sci. Technol. 32 3161-3167. https://doi.org/10.1007/s12206-018-0619-5.
  27. Timoshenko, S.P. and Gere, J.M. (1961), "Theory of Elastic Stability", McGraw-Hill, Second Edition.
  28. Viet Hoang, V.N., Tien, N.D., Ninh, D.G., Thang, V.T. and Truong, D.V. (2020), "Nonlinear dynamics of functionally graded graphene nanoplatelet reinforced polymer doubly-curved shallow shells resting on elastic foundation using a micromechanical model", J. Sandw. Struct. Mater., 23(7), 3250-3279. https://doi.org/10.1177/1099636220926650.
  29. Vu, H.N., Nguyen, T.P., Ho, S.L., Vu, M.D., Cao, V.D. (2021), "Nonlinear buckling analysis of stiffened FG-GRC laminated cylindrical shells subjected to axial compressive load in thermal environment", Mech. Based Des. Struct., 1-17. https://doi.org/10.1080/15397734.2021.1932522.
  30. Yaylaci, M., Adiyaman, G., Oner, E., Birinci, A (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. http://doi.org/10.12989/sem.2020.76.3.325.
  31. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.J.S.E. and Mechanics (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. http://doi.org/10.12989/sem.2021.78.2.117.