• Title/Summary/Keyword: Gm-C filter

Search Result 33, Processing Time 0.031 seconds

The Design of A CMOS Gm-C Lowpass Filter with Variable Cutoff Frequency for Direct Conversion Receiver (직접변환 수신기용 가변 차단주파수특성을 갖는 CMOS Gm-C 저역통과필터 설계)

  • Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1464-1469
    • /
    • 2008
  • A CMOS Gm-C filter with variable cutoff frequency applicable for using in the direct conversion receiver is designed. The designed filter comprises the CMOS differential transconductors, and the gm of the transconductor is controlled by the bias voltage. This configuration can compensate variant of the cutoff frequency which could be generated by external noises, and also be used in multiband receiver. As a results of HSPICE simulation, the control range of the cutoff frequency is $1.5MHz{\sim}3.5MHz$ and the gain control range is $-2.8dB{\sim}2.6dB$. The layout of the designed 5th-order Elliptic low-pass filter is performed to fabricate a chip using $2.5V-0.25{\mu}m$ CMOS processing parameter.

Design of Low Voltage Transconductor for Fully Differential Gm-C Filter (완전 차동 Gm-C 필터를 위한 저전압 트랜스컨덕터 설계)

  • Choi, Seok-Woo;Kim, Sun-Hong;Yun, Chang-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.424-427
    • /
    • 2007
  • A fully differential transconductor using the series composite transistor is proposed. Simulation results show that THD is less than 1.2% for the differential input signal of up to $1.5V_{p-p}$ when the input signal frequency is 10MHz. i he proposed transconductor is used to design a third-order elliptic Gm-C lowpass filter with 138kHz cutoff frequency for ADSL Tx filter. The design procedure is based on signal flow graph(SFG) of a doubly-terminated LC ladder filter by means of fully differential transconductors and capacitors. The filter is fabricated and measured with a $0.35{\mu}m$ CMOS process.

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Design of Gain- Tuning Continuous-Time Filter for Direct-Conversion Receiver (직접변환 방식 수신기용 이득 조정 연속시간필터 설계)

  • Kim, Byoung-Wook;Bang, Jun-Ho;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.515-516
    • /
    • 2007
  • A novel design of contious-time filter for direct conversion receiver applications is proposed. The filter supports different modes including GSM, WCDMA. A 5th chebyshev filter is realized in a gm-C filter topology. The filter circuit is implemented in a standard CMOS $0.35{\mu}m$ processing parameter with a supply voltage of 2.5V. The HSPICE results show that the filter has 200KHz and 5MHz cutoff frequency, and each 3.4us and 85.44us gm value.

  • PDF

CMOS Low-voltage Filter For RFID Reader Using A Self-biased Transconductor (자기바이어스 트랜스컨덕터를 이용한 RFID 리더용 CMOS 저전압 필터)

  • Jeong, Taeg-Won;Bang, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1526-1531
    • /
    • 2009
  • This paper describes the design of a 5th order Elliptic CMOS Gm-C low-voltage filter for the RFID reader IC. The designed filter is composed of CMOS differential transconductors by parallel gain circuits to improve the gain of the conventional self-biased differential amplifier. The filter is designed to operate in low-voltage 1.8V to meet the specification of the RFID reader filter. The results of HSPICE simulation using 1.8V-0.18${\mu}m$CMOS processing parameter showed that the designed 5th order Elliptic low-pass filter satisfied the cutoff frequency of 1.35MHz given by the design specification.

The Design of Low Voltage CMOS Gm-C Continuous-Time Filter (저전압 CMOS Gm-C 연속시간 필터 설계)

  • Yun, Chang-Hun;Jung, Sang-Hoon;Choi, Seok-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.348-351
    • /
    • 2001
  • In this paper, the Gm-C filter for low voltage and low power applications using a fully-differential transconductor is presented. The designed transconductor using the series composite transistors and the low voltage composite transistors has wide input range at low supply voltage. A negative resistor load (NRL) technology for high DC gain of the transconductor is employed with a common mode feedback(CMFB). As a design example, the third-order Elliptic lowpass filter is designed. The designed filter is simulated and examined by HSPICE using TSMC $0.35{\mu}m$ CMOS n-well parameters. The simulation results show 138kHz cutoff frequency and 11.05mW power dissipation with a 3.3V supply voltage.

  • PDF

2-5V, 2-4mW, the third-order Elliptic Low-pass Gm-C Finer (2-5V, 2-4mW, 3차 타원 저역통과 Gm-C 필터)

  • 윤창훈;김종민;유영규;최석우;안정철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.257-260
    • /
    • 2000
  • In this paper, a Gm-C filter for low voltage and low power applications using a fully-differential transconductor is presented. The designed transconductor using the series composite transistors and the low voltage composite transistors has wide input range at low supply voltage. A negative resistor load (NRL) technology for high DC gain of the transconductor is employed with a common mode feedback (CMFB). As a design example, the third-order Elliptic lowpass filter is designed. The designed filter is simulated and examined by HSPICE using 0.25${\mu}{\textrm}{m}$ CMOS n-well parameters. The simulation results show 105MHz cutoff frequency and 2.4㎽ power dissipation with a 2.5V supply voltage.

  • PDF

New CMOS Fully-Differential Transconductor and Application to a Fully-Differential Gm-C Filter

  • Shaker, Mohamed O.;Mahmoud, Soliman A.;Soliman, Ahmed M.
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • A new CMOS voltage-controlled fully-differential transconductor is presented. The basic structure of the proposed transconductor is based on a four-MOS transistor cell operating in the triode or saturation region. It achieves a high linearity range of ${\pm}\;1\;V$ at a 1.5 V supply voltage. The proposed transconductor is used to realize a new fully-differential Gm-C low-pass filter with a minimum number of transconductors and grounded capacitors. PSpice simulation results for the transconductor circuit and its filter application indicating the linearity range and verifying the analytical results using $0.35\;{\mu}m$ technology are also given.

  • PDF

Stopband Tunable Multifunctional Gm-C Filter based on OTA with Three-Input/Single-Output (OTA기반의 차단대역 조정이 가능한 3-입력/1-출력 구조의 다기능 Gm-C 필터)

  • Basnet, Barun;Bang, Jun-Ho;Song, Je-ho;Ryu, In-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.201-206
    • /
    • 2015
  • A new electronically stopband tunable filter is proposed with three-input single-output using Operational Transconductance Amplifier (OTA) in this paper. The proposed filter provides band pass, low pass and high pass multifunctional responses. Centre frequency ($f_c$) and quality factor (Q) of the realized filters could independently tuned without disturbing each other. Various network sensitivity and non-ideal characteristic analysis are done to check the sensitivity and parasitic effect of different circuit parameters. The CMOS realization of filter is done with 1.8V-0.18um process parameters and HSPICE simulation results are presented to assert the presented theory.

A CMOS 15MHz, 2.6mW, sixth-order bandpass Gm-C filter (CMOS 공정을 이용한 15MHz, 2.6mW, 6차 대역통과 Gm-C 필터)

  • 유창식;정기욱;김원찬
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.51-57
    • /
    • 1997
  • Low-voltage, low-power gm-C filter utilizing newly dveloped operational transconductance amplifier (OTA) is described in this paper. The OTA has only two MOS transistors in saturation region between $V_{DD}$ and GND, and thus low voltage operation is possible. To improve the linearity, the OTA is made differential. Common mode feedback, essential in differential circuit, requires no additional implemented in $0.8\mu\textrm{m}$ CMOS process, and the center frequency can be controlled from 15MHz with 3.0V single power supply.

  • PDF