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A new CMOS voltage-controlled fully-differential 
transconductor is presented. The basic structure of the 
proposed transconductor is based on a four-MOS 
transistor cell operating in the triode or saturation region. 
It achieves a high linearity range of ± 1 V at a 1.5 V 
supply voltage. The proposed transconductor is used to 
realize a new fully-differential Gm-C low-pass filter with a 
minimum number of transconductors and grounded 
capacitors. PSpice simulation results for the 
transconductor circuit and its filter application indicating 
the linearity range and verifying the analytical results 
using 0.35 µm technology are also given. 
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I. Introduction 

Transconductance elements are useful building blocks in 
analog signal processing systems, especially in continuous time 
filters [1]-[15]. Transconductance-C or Gm-C filters have 
recently received great interest since they are suitable for 
integration and can operate at high frequencies. Although on-
chip active filters consume power, chip area, and limit the 
overall dynamic range, they enable high integration and 
bandwidth tuning [1]. Therefore, the design of highly linear 
and tunable transconductors has become mandatory.  

Several realizations for CMOS transconductors have been 
introduced in the literature [2]-[12]. The realization given in [2] is 
based on using a differential stage with MOS transistors 
operating in the saturation region with their sources connected to 
their substrates. The realizations given in [3] and [4] provide a 
CMOS transconductor with a balanced output current based on 
the use of a wide input range differential transconductor. The 
CMOS transconductor given in [5] is based on the use of a 
simple MOS differential pair. The use of a four-MOS transistor 
cell to realize CMOS transconductors was first introduced by 
Czarnul [6] and used in [7] through [9]. The realization given in 
[10] is based on the use of MOS transistors operating in the non-
saturation region, while the one given in [11] is based on the use 
of multiple-input floating gate transistors. The use of a cross-
coupled quad-cell-based input stage together with an additional 
linearizing symmetrical differential pair was given in [12].  

In this paper, a new CMOS fully-differential transconductor 
is presented. Fully-differential transconductor structures avoid 
the use of a current mirror for current subtraction, as in single-
ended transconductors, by generating two output currents and 
effectively performing the subtraction by taking the output 
current across two nodes instead of at a single node referred to 
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ground [13]. The structure of the proposed transconductor 
depends on a four-MOS transistor cell to obtain a linear 
transconductor with a wide input operating range. 

The basic structure of the fully-differential transconductor 
and its symbol are shown in Figs. 1(a) and 1(b), in which the 
voltage-to-current converter (V-I) generates two output currents, 
Io1 and Io2, where output current Io is linearly proportional to the 
differential input voltage (V1 – V2) such that 

Io = Io2 – Io1 = Ia – Ib = G(V1 – V2),          (1) 

where G is the equivalent transconductance.  
In section II, the realization of the CMOS fully-differential 

transconductor is introduced. In section III, the proposed 
transconductor is used to design a new fully-differential third-order 
low-pass filter with a minimum number of components and 
grounded capacitors. Finally, conclusions are stated in section IV. 
PSpice simulation results for the transconductor circuit indicating the 
linearity range and confirming the analytical results are also given. 
 

 

Fig. 1. (a) The basic structure of the fully-differential 
transconductor and (b) the symbol of the fully-
differential transconductor. 
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II. The CMOS Fully-Differential Transconductor 

The structure of the proposed CMOS fully-differential 
transconductor depends on the four-MOS transistor cell, as 
shown in Fig. 2. In Fig. 2, the input voltage V1 is connected to 
the gates of M1 and M4, and the input voltage V2 is connected 
to the gates of M2 and M3. This four-transistor cell was used to 
realize fully-integrated CT filters under the condition where 
four transistors are operating in the triode region and the drain 
voltages of the four transistors are equal (VD1=VD2). Using the 

 

Fig. 2. The CMOS circuit of the four-MOS transistor cell [6]. 
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current in the triode region of an NMOS transistor as a function 
of the gate (VG), drain (VD), source (VS), and threshold (VT) 
voltages given in [14] by 
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where µn is the electron mobility; COX is the gate oxide 
capacitance per unit area; W/L is the transistor aspect ratio; VT 
is the threshold voltage (assumed equal for all NMOS 
transistors); and K is the transistor transconductance parameter. 
Assuming that all body terminals are connected to the proper 
supply voltages, the differential output current is given by 
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Therefore, a linear relation between the differential output 
current Io1 – Io2 and the differential input voltage (V1 – V2) can 
be obtained with VC1 and VC2 being independent of V1 and V2. 
Therefore, the transconductance G is given by 

)V-K(VG C1C2= ,               (5) 

which can be controlled by the differential voltage VC2 – VC1. 
It is interesting to note that by using the square-law equation 

of the drain current in the saturation region given by 
ID=(K/2)(VGS–VT)2, the same relation between the differential 
output current Io2 – Io1 and the differential input voltage (V1 – 
V2) as given in (4) is obtained. Therefore, proper operation for 
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Fig. 3. The CMOS circuit of the proposed fully-differential 
transconductor. 

M5 
M6 M9

M13
M11 

M1 

M12 

M14 
M15M3 M4 M2 

M7 M10 

V1 

VC1 

V2 

VC2

VB2

I o1Io2 

M8 

VDD 

VB1 

Ia Ib 

IB1 

 
 
the input voltages V1 and V2 is to make the four transistors ‘on’ 
provided that the drain voltages are equal. The proposed 
CMOS transconductor shown in Fig. 3 is formed using M1 to 
M4 as the basic MOS transistors; M5, M6, and M9 as current 
sources; and M7 and M10 as source followers, where M12 and 
M13 sense the current in M8 and M11, respectively, while M14 
and M15 are used as constant current sources. The loop formed 
by M7 and M8 ensures that the voltage at the source of M7 is 
constant and can be obtained as 

2
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The role of transistor M8 is to form a negative feedback 
action, which provides the necessary currents needed by 
transistors M1 and M3 without changing the voltage so as to 
satisfy (7). 

Similarly, the loop formed by M10 and M11 operates in the 
same manner, hence 
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If M7 and M10 are matched, then from (7) and (8), 
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And the input voltage range will be increased to 

.VV)V(orV,VV)V(orV T2 C21T1 C21 +≥+≥      (10) 

The circuit shown in Fig. 3 can be extended to realize a 
multiple output transconductor by repeating the output stage, 
which consists of transistors M12 through M15 as shown in Fig. 
4. Performances of both the four-MOS transistor cell and the 
proposed fully-differential transconductor are simulated using 
PSpice. The transistor aspect ratios of the proposed 

 
 

Fig. 4. The CMOS circuit of the proposed multiple output transconductor. 
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transconductor are give in Table 1. The supply voltage used is 
given by VDD = 1.5 V, IB1 is set to 120 µA, and the control 
voltages used are given by VC1 = -1.5 V, VC2 = -1.2 V to keep 
the basic transistors M1 through M4 on and to satisfy (10). Figure 5 
shows the differential output current for the proposed 
transconductor versus (V1 – V2), which is scanned from –1 V to 
1 V, compared with that of the four-MOS transistor cell. It is seen 
 

Table 1. Transistor aspect ratios of the proposed transconductor. 

Transistors Aspect ratio (W/L) 

M5, M6, M9 64/2 

M1, M2, M3, M4 8/2 

M8, M11, M12, M13 40/2 

M7, M10 96/2 

M14, M15 10/2 

 
 

 

Fig. 5. The DC output current of the proposed fully-differential 
transconductor. 
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Fig. 6. The magnitude frequency response of the proposed fully-
differential transconductor.
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Fig. 7. The simulated IM3 frequency spectrum of the proposed fully-
differential transconductor output current at input frequencies 
of 80 and 90 MHz and at input voltages of 1 Vp-p. 
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Fig. 8. The IP3 plot of the proposed fully-differential 
transconductor output current at input frequencies of 
80 and 90 MHz.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
-160

-140

-120

-100

-80

-60

-40

Vp-p (V) 

O
ut

pu
t c

ur
re

nt
 (d

B)
 

Fundamental component 

Harmonic component 

 
 
that the linearity range becomes wide and that the 
transconductance of the proposed transconductor seems constant 
over a wide range. Simulation results showed that the 3 dB 
frequency of the proposed transconductor when terminated by 1 
KΩ is 300 MHz as shown in Fig. 6. Figure 7 shows the third-order 
intermodulation (IM3) of the differential output current when 1 Vp-

p sinusoidal voltage signals of 80 MHz and 90 MHz are applied at 
the input. The IM3 is about 30 dB. The input of the third intercept 
point (IIP3) is equal to 1.2 Vp-p, which can be obtained directly 
from the third intercept point (IP3) plot shown in Fig. 8. 

III. The Proposed Fully-Differential Filter 

Any active filter implementation requires basic functions 
such as integration, lossy integration, and addition [15]. The 
addition or subtraction in the filters based on differential 
transconductors is achieved by simply connecting the output of 
the transconductors that deliver the signal to be summed. In  
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Fig. 9. The symbol of the differential current integrator. 
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this section, the application of the proposed transconductor to 
realize a fully-differential low-pass third-order filter is given. 

A. Integrator 

The basic building block in the construction of Gm-C filters 
is the integrator. The symbol of the differential current 
integrator is shown in Fig. 9, in which the differential output 
current can be obtained as  

)I(I
sC
GI fio −= ,                (11) 

where Io = Io+ - Io- is the differential output current, Ii = Ii+ – Ii- is 
the differential input current, and If = If+ – If- is the differential 
feedback current.  

B. New Fully-Differential Low-Pass Third-Order Filter 

An example of the use of the proposed differential 
transconductor in the realization of an active filter is shown in 
Fig. 10. The filter has low-pass output in a differential form. 
The circuit includes three transconductors and six grounded 
capacitors, which makes the filter suitable for very-large-scale-
integration implementation. The transfer function of the low-
pass output is given by 
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where the time constant jjj /GCτ = . 
Figure 11 shows the PSpice simulation results of the Gm-C 

filter using the proposed transconductor with G1 = G2 = G3 = 
50 µA/V and C1 = C2 = C3 = 0.4 pF to obtain a maximally flat 
magnitude low-pass response designed for a DC gain of 1 and 
fo = 20 MHz. It is clear that the ideal and actual responses are 
almost identical at low frequencies, but there is a difference at 
high frequencies due to parasitic effects, which can be reduced 
by using compensation methods. Figure 12 shows the IM3 of 

 

Fig. 10. The third-order low-pass Gm-C filter. 
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Fig. 11. The magnitude frequency response of the third-order low-
pass filter. 
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Fig. 12. The simulated IM3 frequency spectrum of the proposed 
Gm-C output current at input frequencies of 8 and 9 MHz.
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the differential output current when sinusoidal current signals 
of 8 and 9 MHz are applied at the input. The IM3 is about 20 
dB due to the use of a wide linear transconductor. 

IV. Conclusions 

In this paper, a tunable transconductor based on the four-
MOS transistor cell, which can operate in the linear or 
saturation region, has been presented. A third-order maximally 
flat low-pass filter with a minimum number of blocks, which is 



180   Mohamed O. Shaker et al. ETRI Journal, Volume 28, Number 2, April 2006 

based on lossless/lossy integrators, has been introduced. The 
proposed blocks and their applications have been confirmed 
using PSpice simulation. 
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