• Title/Summary/Keyword: Glycolysis

Search Result 239, Processing Time 0.031 seconds

Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

  • Li, Qiong;Li, Zhongwen;Lou, Aihua;Wang, Zhenyu;Zhang, Dequan;Shen, Qingwu W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.857-864
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-${\beta}$-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction (근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향)

  • Park, Dae-Ryoung
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity

  • Lee, Seunghyeong;Byun, Jun-Kyu;Kim, Na-Young;Jin, Jonghwa;Woo, Hyein;Choi, Yeon-Kyung;Park, Keun-Gyu
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.459-464
    • /
    • 2022
  • Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer.

Effect of Glycolysis Rate in Porcine Muscle Postmortem on Gel Property of Pork Surimi (돼지 근육의 사후 해당속도가 돈육 수리미의 젤 특성에 미치는 영향)

  • Kang Guen-Ho;Yang Han-Sul;Jeong Jin-Yeon;Joo Seon-Tea;Park Gu-Boo
    • Food Science of Animal Resources
    • /
    • v.25 no.4
    • /
    • pp.423-429
    • /
    • 2005
  • Properties of pant surimi derived from porcine longissimus muscle were investigated Rapid glycolysis of muscle reduced yield $\%$ of water-washed pork and moisture $\%$ of pent surimi because of ie lower ultimate pH. Gel Hardness was significantly (p<0.05) higher in pork surimi from rapid glycolysis muscle, but springiness was higher (p<0.05) in pork surimi from normal glycolysis muscle. SDS-PAGE pattern showed denaturation of sarcoplasmic proteins onto myofibrillar proteins in rapid glycolysis muscle, resulted in dark color and hard texture of pork surimi. Color and texture of gels were related with water-holding capacity of muscle proteins and moisture $\%$ in gel matrix. Results imply that glycolysis rate of porcine muscle at postmortem could affect gel properties of pork surimi, and muscle with rapid glycolysis muscle could produce a hard texture of pork surimi and dark color.

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L.;Goodwin, Justin;Sankaranarayanan, Ishwarya;Yetkin, Celal Emre;Hsieh, Meng-Hsiung;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

Development of Depolymerization Method on the Recycling of Waste Flexible Polyurethane Foam (연질 폐우레탄 폼의 재활용을 위한 해중합법 개발)

  • 엄재열;이병학;신판우;김용렬
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.41-49
    • /
    • 2002
  • Resource recovery and recycling of materials and products including polyurethanes are viewed as a necessity in today's society. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and physical. In the chemical recycling method, there ate hydrolysis, glycolysis, pyrolysis and aminolysis. This study was carried out glycolysis using new method such as sonication and catalyzed reaction. There are kinds of recycled polyols were produced by current method(glycolysis) but, this study were with catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols and then the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication and catalyzed reaction for the various glycols, increased as: PPG

Construction of Comprehensive Metabolic Network for Glycolysis with Regulation Mechanisms and Effectors

  • JIN, JONG-HWA;JUNG, UI-SUB;JAE, WOOK-NAM;IN, YONG-HO;LEE, SANG-YUP;LEE, DOHE-ON;LEE, JIN-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.161-174
    • /
    • 2005
  • Abstract Glycolysis has a main function to provide ATP and precursor metabolites for biomass production. Although glycolysis is one of the most important pathways in cellular metabolism, the details of its regulation mechanism and regulating chemicals are not well known yet. The regulation of the glycolytic pathway is very robust to allow for large fluxes at almost constant metabolite levels in spite of changing environmental conditions and many reaction effectors like inhibitors, activating compounds, cofactors, and related metal ions. These changing environmental conditions and metabolic reaction effectors were focused on to understand their roles in the metabolic networks. In this study, we have investigated for construction of the regulatory map of the glycolytic metabolic network and tried to collect all the effectors as much as possible which might affect the glycolysis metabolic pathway. Using the results of this study, it is expected that a complex metabolic situation can be more precisely analyzed and simulated by using available programs and appropriate kinetic data.

Depolymerization of Polycarbonate Using Glycolysis/Methanolysis Hybrid Process (폴리카보네이트의 글리콜첨가분해/메탄올첨가분해 복합 해중합)

  • Kim, D.P.;Kim, B.K.;Cho, Y.M.;Kim, B.S.;Han, M.
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.251-256
    • /
    • 2007
  • Several studies regarding depolymerization of polycarbonate waste to get the essential monomer, bisphenol A, have been reported in recent years. However, those methods have some environmental safety problems of using highly toxic organic solvents as well as product separation problem due to the use of alkali catalyst. In this study, we proposed the combination of glycolysis and methanolysis to depolymerize the polycarbonate waste. Glycolysis reaction reached at the reaction equilibrium after about 180 minat 473.15K and dissolution of the polycarbonate was found to be a rate controlling step of the reaction. The yield of BPA was improved with the aid of combination of glycolysis and methanolysis. The methanolysis was carried out at a temperature range of $303.15K{\sim}363.15K$ and MeOH/PC molar ratio $0.5{\sim}3$. The yield of BPA had a maximum at 1.0 MeOH/PC molar ratio and increased with the reaction temperature.

  • PDF

Depolymerization of Waste Polyurethane from Automotive Seats (자동차 시트용 폐폴리우레탄의 해중합)

  • Min, Sung-Jin;Kong, Seung-Dae;Yoon, Cheol-Hun;Kang, An-Soo;Eom, Jae-Yeol;Shin, Pan-Woo;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • Resource recovery and recycling of materials and products, including polyurethanes is viewed as a necessity in today's society. Most urethane polymers are made from a polyol and a diisocyanate. these and be chemicals such as water, diamines or diols that react with isocyanate groups and add to the polymer backbone. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal whether by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and feedstock. In the chemical recycling method, there are hydrolysis, glycolysis, pyrolysis and aminolysis. This study, the work was carried out glycolysis using sonication ant catalyzed reaction. Different kinds of recycled polyols were produced by current method(glycolysis), catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols, the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication for the various glycols, increased as fallows: PPG

Impact of glucose and pyruvate on adenosine triphosphate production and sperm motility in goats

  • Rangga Setiawan;Raden Febrianto Christi;Ken Ratu Gharizah Alhuur;Rini Widyastuti;Nurcholidah Solihati;Siti Darodjah Rasad;Kundrat Hidajat;Duy Ngoc Do
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.631-639
    • /
    • 2024
  • Objective: This study evaluates goat sperm motility in response to metabolic substrates and various inhibitors, aiming to assess the relative contribution of glycolysis and mitochondrial oxidation for sperm movement and adenosine triphosphate (ATP) production. Methods: In the present study, two main metabolic substrates; 0 to 0.5 mM glucose and 0 to 30 mM pyruvate were used to evaluate their contribution to sperm movements of goats. Using a 3-chloro-1,2-propanediol (3-MCPD), a specific inhibitor for glycolysis, and carbonyl cyanide 3-chlorophenylhydrazone as an inhibitor for oxidative phosphorylation, cellular mechanisms into ATP-generating pathways in relation to sperm movements and ATP production were observed. Data were analysed using one-way analysis of variance for multiple comparisons. Results: Sperm motility analysis showed that either glucose or pyruvate supported sperm movement during 0 to 30 min incubation. However, the supporting effects were abolished by the addition of a glycolysis inhibitor or mitochondrial uncoupler, concomitant with a significant decrease in ATP production. Although oxidative phosphorylation produces larger ATP concentrations than those from glycolysis, sperm progressivity in relation to these two metabolic pathways is comparable. Conclusion: Based on the present study, we suggest that goat sperm use glucose and pyruvate to generate cellular energy through glycolysis and mitochondrial respiration pathways to maintain sperm movement.