DOI QR코드

DOI QR Code

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L. (Department of Biological Sciences, The University of Texas at Dallas) ;
  • Goodwin, Justin (Yale School of Medicine) ;
  • Sankaranarayanan, Ishwarya (Department of Biological Sciences, The University of Texas at Dallas) ;
  • Yetkin, Celal Emre (Department of Biological Sciences, The University of Texas at Dallas) ;
  • Hsieh, Meng-Hsiung (Department of Biological Sciences, The University of Texas at Dallas) ;
  • Kim, Jung-whan (Department of Biological Sciences, The University of Texas at Dallas)
  • Received : 2017.10.17
  • Accepted : 2017.11.01
  • Published : 2018.01.01

Abstract

Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

Keywords

References

  1. Angelin, A., Gil-de-Gomez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M. H., Wang, Z., Quinn, W. J., Kopinski, P. K., Wang, L., Akimova, T., Liu, Y., Bhatti, T. R., Han, R., Laskin, B. L., Baur, J. A., Blair, I. A., Wallace, D. C., Hancock, W. W. and Beier, U. H. (2017) Foxp3 Reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282-1293.e7.
  2. Ansell, S. M. and Vonderheide, R. H. (2013) Cellular composition of the tumor microenvironment. Am. Soc. Clin. Oncol. Educ. Book 33, e91-e97.
  3. Barthel, A., Okino, S. T., Liao, J., Nakatani, K., Li, J., Whitlock, J. P. and Roth, R. A. (1999) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem. 274, 20281-20286. https://doi.org/10.1074/jbc.274.29.20281
  4. Bhowmick, N. A., Neilson, E. G. and Moses, H. L. (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432, 332-337. https://doi.org/10.1038/nature03096
  5. Biswas, S. K. (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43, 435-449. https://doi.org/10.1016/j.immuni.2015.09.001
  6. Boerner, P., Resnick, R. J. and Racker, E. (1985) Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor. Proc. Natl. Acad. Sci. U.S.A. 82, 1350-1353. https://doi.org/10.1073/pnas.82.5.1350
  7. Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F. and Lisanti, M. P. (2010) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9, 1960-1971. https://doi.org/10.4161/cc.9.10.11601
  8. Buck, M. D., O'Sullivan, D. and Pearce, E. L. (2015) T cell metabolism drives immunity. J. Exp. Med. 212, 1345-1360. https://doi.org/10.1084/jem.20151159
  9. Buck, M. D., O'Sullivan, D., Klein Geltink, R. I., Curtis, J. D., Chang, C.-H., Sanin, D. E., Qiu, J., Kretz, O., Braas, D., van der Windt, G. J. W., Chen, Q., Huang, S. C., O'Neill, C. M., Edelson, B. T., Pearce, E. J., Sesaki, H., Huber, T. B., Rambold, A. S. and Pearce, E. L. (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63-76. https://doi.org/10.1016/j.cell.2016.05.035
  10. Cantelmo, A. R., Conradi, L.-C., Brajic, A., Goveia, J., Kalucka, J., Pircher, A., Chaturvedi, P., Hol, J., Thienpont, B., Teuwen, L.-A., Schoors, S., Boeckx, B., Vriens, J., Kuchnio, A., Veys, K., Cruys, B., Finotto, L., Treps, L., Stav-Noraas, T. E., Bifari, F., Stapor, P., Decimo, I., Kampen, K., De Bock, K., Haraldsen, G., Schoonjans, L., Rabelink, T., Eelen, G., Ghesquiere, B., Rehman, J., Lambrechts, D., Malik, A. B., Dewerchin, M. and Carmeliet, P. (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968-985. https://doi.org/10.1016/j.ccell.2016.10.006
  11. Chang, C.-H., Qiu, J., O'Sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., Chen, Q., Gindin, M., Gubin, M. M., van der Windt, G. J. W., Tonc, E., Schreiber, R. D., Pearce, E. J. and Pearce, E. L. (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229-1241. https://doi.org/10.1016/j.cell.2015.08.016
  12. Chen, W.-L., Wang, Y.-Y., Zhao, A., Xia, L., Xie, G., Su, M., Zhao, L., Liu, J., Qu, C., Wei, R., Rajani, C., Ni, Y., Cheng, Z., Chen, Z., Chen, S. J. and Jia, W. (2016) Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell 30, 779-791. https://doi.org/10.1016/j.ccell.2016.09.006
  13. Clarke, J. F., Young, P. W., Yonezawa, K., Kasuga, M. and Holman, G. D. (1994) Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem. J. 300, 631-635. https://doi.org/10.1042/bj3000631
  14. Comerford, S. A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A. K., Walters, H., Tantawy, M. N., Fu, A., Manning, H. C., Horton, J. D., Hammer, R. E., McKnight, S. L. and Tu, B. P. (2014) Acetate dependence of tumors. Cell 159, 1591-1602. https://doi.org/10.1016/j.cell.2014.11.020
  15. Commisso, C., Davidson, S. M., Soydaner-Azeloglu, R. G., Parker, S. J., Kamphorst, J. J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J. A., Thompson, C. B., Rabinowitz, J. D., Metallo, C. M., Vander Heiden, M. G. and Bar-Sagi, D. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633-637. https://doi.org/10.1038/nature12138
  16. Crabtree, H. G. (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem. J. 22, 1289-1298.
  17. Crabtree, H. G. (1929) Observations on the carbohydrate metabolism of tumours. Biochem. J. 23, 536-545. https://doi.org/10.1042/bj0230536
  18. Culic, O., Gruwel, M. L. and Schrader, J. (1997) Energy turnover of vascular endothelial cells. Am. J. Physiol. 273, C205-C213. https://doi.org/10.1152/ajpcell.1997.273.1.C205
  19. De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B. W., Cantelmo, A. R., Quaegebeur, A., Ghesquière, B., Cauwenberghs, S., Eelen, G., Phng, L. K., Betz, I., Tembuyser, B., Brepoels, K., Welti, J., Geudens, I., Segura, I., Cruys, B., Bifari, F., Decimo, I., Blanco, R., Wyns, S., Vangindertael, J., Rocha, S., Collins, R. T., Munck, S., Daelemans, D., Imamura, H., Devlieger, R., Rider, M., Van Veldhoven, P. P., Schuit, F., Bartrons, R., Hofkens, J., Fraisl, P., Telang, S., Deberardinis, R. J., Schoonjans, L., Vinckier, S., Chesney, J., Gerhardt, H., Dewerchin, M. and Carmeliet, P. (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651-663. https://doi.org/10.1016/j.cell.2013.06.037
  20. DeBerardinis, R. J. (2014) Metabolic heterogeneity in cancer. Cancer Metab. 2, O1. https://doi.org/10.1186/2049-3002-2-S1-O1
  21. DeBerardinis, R. J. and Chandel, N. S. (2016) Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200. https://doi.org/10.1126/sciadv.1600200
  22. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
  23. DeNicola, G. M. and Cantley, L. C. (2015) Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 60, 514-523. https://doi.org/10.1016/j.molcel.2015.10.018
  24. DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-Donahue, C., Kern, S. E., Blair, I. A. and Tuveson, D. A. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109. https://doi.org/10.1038/nature10189
  25. Denko, N. C. and Giaccia, A. J. (2001) Tumor hypoxia, the physiological link between Trousseau's syndrome (carcinoma-induced coagulopathy) and metastasis. Cancer Res. 61, 795-798.
  26. Deprez, J., Vertommen, D., Alessi, D. R., Hue, L. and Rider, M. H. (1997) Phosphorylation and activation of heart 6-phosphofructo- 2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269-17275. https://doi.org/10.1074/jbc.272.28.17269
  27. Dobrina, A. and Rossi, F. (1983) Metabolic properties of freshly isolated bovine endothelial cells. Biochim. Biophys. Acta 762, 295-301. https://doi.org/10.1016/0167-4889(83)90084-8
  28. Ducker, G. S. and Rabinowitz, J. D. (2017) One-carbon metabolism in health and disease. Cell Metab. 25, 27-42. https://doi.org/10.1016/j.cmet.2016.08.009
  29. Eelen, G., de Zeeuw, P., Simons, M. and Carmeliet, P. (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116, 1231-1244. https://doi.org/10.1161/CIRCRESAHA.116.302855
  30. Farwell, M. D., Pryma, D. A. and Mankoff, D. A. (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120, 3433-3445. https://doi.org/10.1002/cncr.28860
  31. Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate metabolism in human lung tumors. Cell 171, 358-371.e9. https://doi.org/10.1016/j.cell.2017.09.019
  32. Fernandez-Medarde, A. and Santos, E. (2011) Ras in cancer and developmental diseases. Genes Cancer 2, 344-358. https://doi.org/10.1177/1947601911411084
  33. Fiaschi, T., Marini, A., Giannoni, E., Taddei, M. L., Gandellini, P., De Donatis, A., Lanciotti, M., Serni, S., Cirri, P. and Chiarugi, P. (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72, 5130-5140. https://doi.org/10.1158/0008-5472.CAN-12-1949
  34. Flier, J. S., Mueckler, M. M., Usher, P. and Lodish, H. F. (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492-1495. https://doi.org/10.1126/science.3103217
  35. Fruman, D. A., Chiu, H., Hopkins, B. D., Bagrodia, S., Cantley, L. C. and Abraham, R. T. (2017) The PI3K pathway in human disease. Cell 170, 605-635. https://doi.org/10.1016/j.cell.2017.07.029
  36. Gajewski, T. F., Schreiber, H. and Fu, Y.-X. (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014-1022. https://doi.org/10.1038/ni.2703
  37. Galmozzi, E., Casalini, P., Iorio, M. V., Casati, B., Olgiati, C. and Ménard, S. (2004) HER2 signaling enhances 5'UTR-mediated translation of c-Myc mRNA. J. Cell. Physiol. 200, 82-88. https://doi.org/10.1002/jcp.20012
  38. Geiger, R., Rieckmann, J. C., Wolf, T., Basso, C., Feng, Y., Fuhrer, T., Kogadeeva, M., Picotti, P., Meissner, F., Mann, M., Zamboni, N., Sallusto, F. and Lanzavecchia, A. (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829-842.e13. https://doi.org/10.1016/j.cell.2016.09.031
  39. Gentric, G., Mieulet, V. and Mechta-Grigoriou, F. (2017) Heterogeneity in cancer metabolism: new concepts in an old field. Antioxid. Redox Signal. 26, 462-485. https://doi.org/10.1089/ars.2016.6750
  40. Ghesquière, B., Wong, B. W., Kuchnio, A. and Carmeliet, P. (2014) Metabolism of stromal and immune cells in health and disease. Nature 511, 167-176. https://doi.org/10.1038/nature13312
  41. Goodwin, J., Neugent, M. L., Lee, S. Y., Choe, J. H., Choi, H., Jenkins, D. M. R., Ruthenborg, R. J., Robinson, M. W., Jeong, J. Y., Wake, M., Abe, H., Takeda, N., Endo, H., Inoue, M., Xuan, Z., Yoo, H., Chen, M., Ahn, J. M., Minna, J. D., Helke, K. L., Singh, P. K., Shackelford, D. B. and Kim, J. W. (2017) The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat. Commun. 8, 15503. https://doi.org/10.1038/ncomms15503
  42. Gossage, L., Eisen, T. and Maher, E. R. (2015) VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55-64. https://doi.org/10.1038/nrc3844
  43. Hamanaka, R. B. and Chandel, N. S. (2012) Targeting glucose metabolism for cancer therapy. J. Exp. Med. 196, i3.
  44. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  45. Harvey, J. J. (1964) An unidentified virus which causes the rapid production of tumours in mice. Nature 204, 1104-1105.
  46. Hay, N. (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649. https://doi.org/10.1038/nrc.2016.77
  47. Heitman, J., Movva, N. R. and Hall, M. N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909. https://doi.org/10.1126/science.1715094
  48. Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R., Loudat, L., Wodzak, M., Klimko, C., McMillan, E., Butt, Y., Ni, M., Oliver, D., Torrealba, J., Malloy, C. R., Kernstine, K., Lenkinski, R. E. and DeBerardinis, R. J. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694. https://doi.org/10.1016/j.cell.2015.12.034
  49. Hu, H., Juvekar, A., Lyssiotis, C. A., Lien, E. C., Albeck, J. G., Oh, D., Varma, G., Hung, Y. P., Ullas, S., Lauring, J., Seth, P., Lundquist, M. R., Tolan, D. R., Grant, A. K., Needleman, D. J., Asara, J. M., Cantley, L. C. and Wulf, G. M. (2016) Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433-446. https://doi.org/10.1016/j.cell.2015.12.042
  50. Hui, S., Ghergurovich, J. M., Morscher, R. J., Jang, C., Teng, X., Lu, W., Esparza, L. A., Reya, T., Zhan, L., Yanxiang Guo, J., White, E. and Rabinowitz, J. D. (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 118, 3930.
  51. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S. and Kaelin, W. G. (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468. https://doi.org/10.1126/science.1059817
  52. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W. and Ratcliffe, P. J. (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472. https://doi.org/10.1126/science.1059796
  53. Junttila, M. R. and de Sauvage, F. J. (2013) Influence of tumour microenvironment heterogeneity on therapeutic response. Nature 501, 346-354.
  54. Kalluri, R. (2016) The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582-598. https://doi.org/10.1038/nrc.2016.73
  55. Kayani, I. and Groves, A. M. (2006) 18F-fluorodeoxyglucose PET/CT in cancer imaging. Clin. Med. (Lond.) 6, 240-244.
  56. Kim, D.-H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument- Bromage, H., Tempst, P. and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175. https://doi.org/10.1016/S0092-8674(02)00808-5
  57. Kim, J.-W., Evans, C., Weidemann, A., Takeda, N., Lee, Y. S., Stockmann, C., Branco-Price, C., Brandberg, F., Leone, G., Ostrowski, M. C. and Johnson, R. S. (2012) Loss of fibroblast HIF-$1{\alpha}$ accelerates tumorigenesis. Cancer Res. 72, 3187-3195. https://doi.org/10.1158/0008-5472.CAN-12-0534
  58. Kim, J.-W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  59. Kirsten, W. H. and Mayer, L. A. (1967) Morphologic responses to a murine erythroblastosis virus. J. Natl. Cancer Inst. 39, 311-335.
  60. Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337. https://doi.org/10.1038/nrc3038
  61. Koukourakis, M. I., Giatromanolaki, A., Harris, A. L. and Sivridis, E. (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632-637. https://doi.org/10.1158/0008-5472.CAN-05-3260
  62. Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. and Semenza, G. L. (2001) HER2 (neu) signaling increases the rate of hypoxiainducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21, 3995-4004. https://doi.org/10.1128/MCB.21.12.3995-4004.2001
  63. Linares, J. F., Cordes, T., Duran, A., Reina-Campos, M., Valencia, T., Ahn, C. S., Castilla, E. A., Moscat, J., Metallo, C. M. and Diaz-Meco, M. T. (2017) ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. doi: 10.1016/j.cmet.2017.09.001 [Epub ahead of print].
  64. Lyssiotis, C. A. and Kimmelman, A. C. (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863-875. https://doi.org/10.1016/j.tcb.2017.06.003
  65. Malumbres, M. and Barbacid, M. (2003) RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459-465. https://doi.org/10.1038/nrc1097
  66. Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K. J., Singh, D. K., Sirasanagandla, S., Nannepaga, S., Piccirillo, S. G., Kovacs, Z., Foong, C., Huang, Z., Barnett, S., Mickey, B. E., DeBerardinis, R. J., Tu, B. P., Maher, E. A., Bachoo, R. M. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603-1614. https://doi.org/10.1016/j.cell.2014.11.025
  67. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R. and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. https://doi.org/10.1038/20459
  68. Millis, S. Z., Ikeda, S., Reddy, S., Gatalica, Z. and Kurzrock, R. (2016) Landscape of phosphatidylinositol-3-kinase pathway alterations across 19 784 diverse solid tumors. JAMA Oncol. 2, 1565-1573. https://doi.org/10.1001/jamaoncol.2016.0891
  69. Miyamoto, S., Murphy, A. N. and Brown, J. H. (2008) Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 15, 521-529. https://doi.org/10.1038/sj.cdd.4402285
  70. Monti, S., Savage, K. J., Kutok, J. L., Feuerhake, F., Kurtin, P., Mihm, M., Wu, B., Pasqualucci, L., Neuberg, D., Aguiar, R. C. T., Dal Cin, P., Ladd, C., Pinkus, G. S., Salles, G., Harris, N. L., Dalla-Favera, R., Habermann, T. M., Aster, J. C., Golub, T. R. and Shipp, M. A. (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105, 1851-1861. https://doi.org/10.1182/blood-2004-07-2947
  71. Munn, D. H., Shafizadeh, E., Attwood, J. T., Bondarev, I., Pashine, A. and Mellor, A. L. (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363-1372. https://doi.org/10.1084/jem.189.9.1363
  72. Murphy, J. B. and Hawkins, J. A. (1925) Comparative studies on the metabolism of normal and malignant cells. J. Gen. Physiol. 8, 115-130.
  73. Neal, J. W. and Sledge, G. W. (2014) Decade in review-targeted therapy: successes, toxicities and challenges in solid tumours. Nat. Rev. Clin. Oncol. 11, 627-628. https://doi.org/10.1038/nrclinonc.2014.171
  74. Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O. and Ui, M. (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568-3573.
  75. Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A. and Dang, C. V. (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800. https://doi.org/10.1074/jbc.C000023200
  76. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
  77. Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., Casimiro, M. C., Wang, C., Fortina, P., Addya, S., Pestell, R. G., Martinez-Outschoorn, U. E., Sotgia, F. and Lisanti, M. P. (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984-4001. https://doi.org/10.4161/cc.8.23.10238
  78. Rathmell, J. C., Fox, C. J., Plas, D. R., Hammerman, P. S., Cinalli, R. M. and Thompson, C. B. (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factorindependent survival. Mol. Cell. Biol. 23, 7315-7328. https://doi.org/10.1128/MCB.23.20.7315-7328.2003
  79. Rattigan, Y. I., Patel, B. B., Ackerstaff, E., Sukenick, G., Koutcher, J. A., Glod, J. W. and Banerjee, D. (2012) Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp. Cell Res. 318, 326-335. https://doi.org/10.1016/j.yexcr.2011.11.014
  80. Reitzer, L. J., Wice, B. M. and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669-2676.
  81. Sears, R., Leone, G., DeGregori, J. and Nevins, J. R. (1999) Ras enhances Myc protein stability. Mol. Cell 3, 169-179. https://doi.org/10.1016/S1097-2765(00)80308-1
  82. Semba, H., Takeda, N., Isagawa, T., Sugiura, Y., Honda, K., Wake, M., Miyazawa, H., Yamaguchi, Y., Miura, M., Jenkins, D. M. R., Choi, H., Kim, J. W., Asagiri, M., Cowburn, A. S., Abe, H., Soma, K., Koyama, K., Katoh, M., Sayama, K., Goda, N., Johnson, R. S., Manabe, I., Nagai, R. and Komuro, I. (2016) HIF-$1{\alpha}$-PDK1 axisinduced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun. 7, 11635.
  83. Semenza, G. L. (2010) HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51-56. https://doi.org/10.1016/j.gde.2009.10.009
  84. Semenza, G. L. (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207-214. https://doi.org/10.1016/j.tips.2012.01.005
  85. Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., Dalla-Favera, R. and Dang, C. V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 94, 6658-6663. https://doi.org/10.1073/pnas.94.13.6658
  86. Silvera, D., Formenti, S. C. and Schneider, R. J. (2010) Translational control in cancer. Nat. Rev. Cancer 10, 254-266. https://doi.org/10.1038/nrc2824
  87. Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A. and Kimmelman, A. C. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479-483. https://doi.org/10.1038/nature19084
  88. Tennant, D. A., Duran, R. V. and Gottlieb, E. (2010) Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277.
  89. Treps, L., Conradi, L.-C., Harjes, U. and Carmeliet, P. (2016) Manipulating angiogenesis by targeting endothelial metabolism: hitting the engine rather than the drivers-A new perspective? Pharmacol. Rev. 68, 872-887. https://doi.org/10.1124/pr.116.012492
  90. Vandekeere, S., Dewerchin, M. and Carmeliet, P. (2015) Angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation 22, 509-517. https://doi.org/10.1111/micc.12229
  91. Vander Heiden, M. G. (2013) Exploiting tumor metabolism: challenges for clinical translation. J. Clin. Invest. 123, 3648-3651. https://doi.org/10.1172/JCI72391
  92. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  93. Vander Heiden, M. G. and DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669. https://doi.org/10.1016/j.cell.2016.12.039
  94. Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. (1995) Hypoxia- inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  95. Warburg, O. (1925) Iron, the oxygen-carrier of respiration-ferment. Science 61, 575-582. https://doi.org/10.1126/science.61.1588.575
  96. Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269-270.
  97. Ward, P. S. and Thompson, C. B. (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol. 4, a006783.
  98. Whitman, M., Downes, C. P., Keeler, M., Keller, T. and Cantley, L. (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644-646. https://doi.org/10.1038/332644a0
  99. Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C. and DePinho, R. A. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670. https://doi.org/10.1016/j.cell.2012.01.058
  100. Zhang, D., Wang, Y., Shi, Z., Liu, J., Sun, P., Hou, X., Zhang, J., Zhao, S., Zhou, B. P. and Mi, J. (2015) Metabolic reprogramming of cancer-associated fibroblasts by $IDH3{\alpha}$ downregulation. Cell Rep. 10, 1335-1348. https://doi.org/10.1016/j.celrep.2015.02.006

Cited by

  1. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  2. Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment vol.12, pp.2, 2019, https://doi.org/10.1007/s12307-019-00226-0
  3. Metabolic Plasticity in Chemotherapy Resistance vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00281
  4. Lactic Acidosis Interferes With Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.581365
  5. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy vol.100, pp.1, 2018, https://doi.org/10.1152/physrev.00018.2019
  6. Autophagy Driven Extracellular Vesicles in the Leukaemic Microenvironment vol.20, pp.7, 2018, https://doi.org/10.2174/1568009620666200428111051