Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.210

A New Perspective on the Heterogeneity of Cancer Glycolysis  

Neugent, Michael L. (Department of Biological Sciences, The University of Texas at Dallas)
Goodwin, Justin (Yale School of Medicine)
Sankaranarayanan, Ishwarya (Department of Biological Sciences, The University of Texas at Dallas)
Yetkin, Celal Emre (Department of Biological Sciences, The University of Texas at Dallas)
Hsieh, Meng-Hsiung (Department of Biological Sciences, The University of Texas at Dallas)
Kim, Jung-whan (Department of Biological Sciences, The University of Texas at Dallas)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 10-18 More about this Journal
Abstract
Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.
Keywords
Glycolysis; Heterogeneity; Tumor microenvironment; Stroma; Metabolism; Cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ghesquière, B., Wong, B. W., Kuchnio, A. and Carmeliet, P. (2014) Metabolism of stromal and immune cells in health and disease. Nature 511, 167-176.   DOI
2 Goodwin, J., Neugent, M. L., Lee, S. Y., Choe, J. H., Choi, H., Jenkins, D. M. R., Ruthenborg, R. J., Robinson, M. W., Jeong, J. Y., Wake, M., Abe, H., Takeda, N., Endo, H., Inoue, M., Xuan, Z., Yoo, H., Chen, M., Ahn, J. M., Minna, J. D., Helke, K. L., Singh, P. K., Shackelford, D. B. and Kim, J. W. (2017) The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat. Commun. 8, 15503.   DOI
3 Gossage, L., Eisen, T. and Maher, E. R. (2015) VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55-64.   DOI
4 Hamanaka, R. B. and Chandel, N. S. (2012) Targeting glucose metabolism for cancer therapy. J. Exp. Med. 196, i3.
5 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
6 Harvey, J. J. (1964) An unidentified virus which causes the rapid production of tumours in mice. Nature 204, 1104-1105.
7 Hay, N. (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649.   DOI
8 Heitman, J., Movva, N. R. and Hall, M. N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909.   DOI
9 Semenza, G. L. (2010) HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51-56.   DOI
10 Semenza, G. L. (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207-214.   DOI
11 Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., Dalla-Favera, R. and Dang, C. V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 94, 6658-6663.   DOI
12 Silvera, D., Formenti, S. C. and Schneider, R. J. (2010) Translational control in cancer. Nat. Rev. Cancer 10, 254-266.   DOI
13 Vandekeere, S., Dewerchin, M. and Carmeliet, P. (2015) Angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation 22, 509-517.   DOI
14 Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A. and Kimmelman, A. C. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479-483.   DOI
15 Tennant, D. A., Duran, R. V. and Gottlieb, E. (2010) Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277.
16 Treps, L., Conradi, L.-C., Harjes, U. and Carmeliet, P. (2016) Manipulating angiogenesis by targeting endothelial metabolism: hitting the engine rather than the drivers-A new perspective? Pharmacol. Rev. 68, 872-887.   DOI
17 Vander Heiden, M. G. (2013) Exploiting tumor metabolism: challenges for clinical translation. J. Clin. Invest. 123, 3648-3651.   DOI
18 Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. (1995) Hypoxia- inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92, 5510-5514.   DOI
19 Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.   DOI
20 Vander Heiden, M. G. and DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669.   DOI
21 Warburg, O. (1925) Iron, the oxygen-carrier of respiration-ferment. Science 61, 575-582.   DOI
22 Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269-270.
23 Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S. and Kaelin, W. G. (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468.   DOI
24 Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R., Loudat, L., Wodzak, M., Klimko, C., McMillan, E., Butt, Y., Ni, M., Oliver, D., Torrealba, J., Malloy, C. R., Kernstine, K., Lenkinski, R. E. and DeBerardinis, R. J. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694.   DOI
25 Hu, H., Juvekar, A., Lyssiotis, C. A., Lien, E. C., Albeck, J. G., Oh, D., Varma, G., Hung, Y. P., Ullas, S., Lauring, J., Seth, P., Lundquist, M. R., Tolan, D. R., Grant, A. K., Needleman, D. J., Asara, J. M., Cantley, L. C. and Wulf, G. M. (2016) Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433-446.   DOI
26 Hui, S., Ghergurovich, J. M., Morscher, R. J., Jang, C., Teng, X., Lu, W., Esparza, L. A., Reya, T., Zhan, L., Yanxiang Guo, J., White, E. and Rabinowitz, J. D. (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 118, 3930.
27 Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W. and Ratcliffe, P. J. (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472.   DOI
28 Kalluri, R. (2016) The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582-598.   DOI
29 Whitman, M., Downes, C. P., Keeler, M., Keller, T. and Cantley, L. (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644-646.   DOI
30 Ward, P. S. and Thompson, C. B. (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol. 4, a006783.
31 Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C. and DePinho, R. A. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670.   DOI
32 Kim, J.-W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185.   DOI
33 Kayani, I. and Groves, A. M. (2006) 18F-fluorodeoxyglucose PET/CT in cancer imaging. Clin. Med. (Lond.) 6, 240-244.
34 Zhang, D., Wang, Y., Shi, Z., Liu, J., Sun, P., Hou, X., Zhang, J., Zhao, S., Zhou, B. P. and Mi, J. (2015) Metabolic reprogramming of cancer-associated fibroblasts by $IDH3{\alpha}$ downregulation. Cell Rep. 10, 1335-1348.   DOI
35 Junttila, M. R. and de Sauvage, F. J. (2013) Influence of tumour microenvironment heterogeneity on therapeutic response. Nature 501, 346-354.
36 Buck, M. D., O'Sullivan, D., Klein Geltink, R. I., Curtis, J. D., Chang, C.-H., Sanin, D. E., Qiu, J., Kretz, O., Braas, D., van der Windt, G. J. W., Chen, Q., Huang, S. C., O'Neill, C. M., Edelson, B. T., Pearce, E. J., Sesaki, H., Huber, T. B., Rambold, A. S. and Pearce, E. L. (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63-76.   DOI
37 Cantelmo, A. R., Conradi, L.-C., Brajic, A., Goveia, J., Kalucka, J., Pircher, A., Chaturvedi, P., Hol, J., Thienpont, B., Teuwen, L.-A., Schoors, S., Boeckx, B., Vriens, J., Kuchnio, A., Veys, K., Cruys, B., Finotto, L., Treps, L., Stav-Noraas, T. E., Bifari, F., Stapor, P., Decimo, I., Kampen, K., De Bock, K., Haraldsen, G., Schoonjans, L., Rabelink, T., Eelen, G., Ghesquiere, B., Rehman, J., Lambrechts, D., Malik, A. B., Dewerchin, M. and Carmeliet, P. (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968-985.   DOI
38 Chang, C.-H., Qiu, J., O'Sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., Chen, Q., Gindin, M., Gubin, M. M., van der Windt, G. J. W., Tonc, E., Schreiber, R. D., Pearce, E. J. and Pearce, E. L. (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229-1241.   DOI
39 Chen, W.-L., Wang, Y.-Y., Zhao, A., Xia, L., Xie, G., Su, M., Zhao, L., Liu, J., Qu, C., Wei, R., Rajani, C., Ni, Y., Cheng, Z., Chen, Z., Chen, S. J. and Jia, W. (2016) Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell 30, 779-791.   DOI
40 Kim, J.-W., Evans, C., Weidemann, A., Takeda, N., Lee, Y. S., Stockmann, C., Branco-Price, C., Brandberg, F., Leone, G., Ostrowski, M. C. and Johnson, R. S. (2012) Loss of fibroblast HIF-$1{\alpha}$ accelerates tumorigenesis. Cancer Res. 72, 3187-3195.   DOI
41 Kirsten, W. H. and Mayer, L. A. (1967) Morphologic responses to a murine erythroblastosis virus. J. Natl. Cancer Inst. 39, 311-335.
42 Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337.   DOI
43 Koukourakis, M. I., Giatromanolaki, A., Harris, A. L. and Sivridis, E. (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632-637.   DOI
44 Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. and Semenza, G. L. (2001) HER2 (neu) signaling increases the rate of hypoxiainducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21, 3995-4004.   DOI
45 Linares, J. F., Cordes, T., Duran, A., Reina-Campos, M., Valencia, T., Ahn, C. S., Castilla, E. A., Moscat, J., Metallo, C. M. and Diaz-Meco, M. T. (2017) ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. doi: 10.1016/j.cmet.2017.09.001 [Epub ahead of print].   DOI
46 Commisso, C., Davidson, S. M., Soydaner-Azeloglu, R. G., Parker, S. J., Kamphorst, J. J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J. A., Thompson, C. B., Rabinowitz, J. D., Metallo, C. M., Vander Heiden, M. G. and Bar-Sagi, D. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633-637.   DOI
47 Clarke, J. F., Young, P. W., Yonezawa, K., Kasuga, M. and Holman, G. D. (1994) Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem. J. 300, 631-635.   DOI
48 Buck, M. D., O'Sullivan, D. and Pearce, E. L. (2015) T cell metabolism drives immunity. J. Exp. Med. 212, 1345-1360.   DOI
49 Kim, D.-H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument- Bromage, H., Tempst, P. and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175.   DOI
50 Comerford, S. A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A. K., Walters, H., Tantawy, M. N., Fu, A., Manning, H. C., Horton, J. D., Hammer, R. E., McKnight, S. L. and Tu, B. P. (2014) Acetate dependence of tumors. Cell 159, 1591-1602.   DOI
51 Crabtree, H. G. (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem. J. 22, 1289-1298.
52 Crabtree, H. G. (1929) Observations on the carbohydrate metabolism of tumours. Biochem. J. 23, 536-545.   DOI
53 Culic, O., Gruwel, M. L. and Schrader, J. (1997) Energy turnover of vascular endothelial cells. Am. J. Physiol. 273, C205-C213.   DOI
54 Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K. J., Singh, D. K., Sirasanagandla, S., Nannepaga, S., Piccirillo, S. G., Kovacs, Z., Foong, C., Huang, Z., Barnett, S., Mickey, B. E., DeBerardinis, R. J., Tu, B. P., Maher, E. A., Bachoo, R. M. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603-1614.   DOI
55 De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B. W., Cantelmo, A. R., Quaegebeur, A., Ghesquière, B., Cauwenberghs, S., Eelen, G., Phng, L. K., Betz, I., Tembuyser, B., Brepoels, K., Welti, J., Geudens, I., Segura, I., Cruys, B., Bifari, F., Decimo, I., Blanco, R., Wyns, S., Vangindertael, J., Rocha, S., Collins, R. T., Munck, S., Daelemans, D., Imamura, H., Devlieger, R., Rider, M., Van Veldhoven, P. P., Schuit, F., Bartrons, R., Hofkens, J., Fraisl, P., Telang, S., Deberardinis, R. J., Schoonjans, L., Vinckier, S., Chesney, J., Gerhardt, H., Dewerchin, M. and Carmeliet, P. (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651-663.   DOI
56 DeBerardinis, R. J. (2014) Metabolic heterogeneity in cancer. Cancer Metab. 2, O1.   DOI
57 DeBerardinis, R. J. and Chandel, N. S. (2016) Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200.   DOI
58 Lyssiotis, C. A. and Kimmelman, A. C. (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863-875.   DOI
59 Malumbres, M. and Barbacid, M. (2003) RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459-465.   DOI
60 Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R. and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.   DOI
61 Millis, S. Z., Ikeda, S., Reddy, S., Gatalica, Z. and Kurzrock, R. (2016) Landscape of phosphatidylinositol-3-kinase pathway alterations across 19 784 diverse solid tumors. JAMA Oncol. 2, 1565-1573.   DOI
62 Dobrina, A. and Rossi, F. (1983) Metabolic properties of freshly isolated bovine endothelial cells. Biochim. Biophys. Acta 762, 295-301.   DOI
63 DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350.   DOI
64 DeNicola, G. M. and Cantley, L. C. (2015) Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 60, 514-523.   DOI
65 DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-Donahue, C., Kern, S. E., Blair, I. A. and Tuveson, D. A. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109.   DOI
66 Miyamoto, S., Murphy, A. N. and Brown, J. H. (2008) Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 15, 521-529.   DOI
67 Monti, S., Savage, K. J., Kutok, J. L., Feuerhake, F., Kurtin, P., Mihm, M., Wu, B., Pasqualucci, L., Neuberg, D., Aguiar, R. C. T., Dal Cin, P., Ladd, C., Pinkus, G. S., Salles, G., Harris, N. L., Dalla-Favera, R., Habermann, T. M., Aster, J. C., Golub, T. R. and Shipp, M. A. (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105, 1851-1861.   DOI
68 Denko, N. C. and Giaccia, A. J. (2001) Tumor hypoxia, the physiological link between Trousseau's syndrome (carcinoma-induced coagulopathy) and metastasis. Cancer Res. 61, 795-798.
69 Deprez, J., Vertommen, D., Alessi, D. R., Hue, L. and Rider, M. H. (1997) Phosphorylation and activation of heart 6-phosphofructo- 2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269-17275.   DOI
70 Ducker, G. S. and Rabinowitz, J. D. (2017) One-carbon metabolism in health and disease. Cell Metab. 25, 27-42.   DOI
71 Eelen, G., de Zeeuw, P., Simons, M. and Carmeliet, P. (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116, 1231-1244.   DOI
72 Farwell, M. D., Pryma, D. A. and Mankoff, D. A. (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120, 3433-3445.   DOI
73 Bhowmick, N. A., Neilson, E. G. and Moses, H. L. (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432, 332-337.   DOI
74 Angelin, A., Gil-de-Gomez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M. H., Wang, Z., Quinn, W. J., Kopinski, P. K., Wang, L., Akimova, T., Liu, Y., Bhatti, T. R., Han, R., Laskin, B. L., Baur, J. A., Blair, I. A., Wallace, D. C., Hancock, W. W. and Beier, U. H. (2017) Foxp3 Reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282-1293.e7.
75 Ansell, S. M. and Vonderheide, R. H. (2013) Cellular composition of the tumor microenvironment. Am. Soc. Clin. Oncol. Educ. Book 33, e91-e97.
76 Barthel, A., Okino, S. T., Liao, J., Nakatani, K., Li, J., Whitlock, J. P. and Roth, R. A. (1999) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem. 274, 20281-20286.   DOI
77 Biswas, S. K. (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43, 435-449.   DOI
78 Boerner, P., Resnick, R. J. and Racker, E. (1985) Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor. Proc. Natl. Acad. Sci. U.S.A. 82, 1350-1353.   DOI
79 Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F. and Lisanti, M. P. (2010) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9, 1960-1971.   DOI
80 Munn, D. H., Shafizadeh, E., Attwood, J. T., Bondarev, I., Pashine, A. and Mellor, A. L. (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363-1372.   DOI
81 Murphy, J. B. and Hawkins, J. A. (1925) Comparative studies on the metabolism of normal and malignant cells. J. Gen. Physiol. 8, 115-130.
82 Neal, J. W. and Sledge, G. W. (2014) Decade in review-targeted therapy: successes, toxicities and challenges in solid tumours. Nat. Rev. Clin. Oncol. 11, 627-628.   DOI
83 Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O. and Ui, M. (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568-3573.
84 Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A. and Dang, C. V. (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800.   DOI
85 Flier, J. S., Mueckler, M. M., Usher, P. and Lodish, H. F. (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492-1495.   DOI
86 Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate metabolism in human lung tumors. Cell 171, 358-371.e9.   DOI
87 Fernandez-Medarde, A. and Santos, E. (2011) Ras in cancer and developmental diseases. Genes Cancer 2, 344-358.   DOI
88 Fiaschi, T., Marini, A., Giannoni, E., Taddei, M. L., Gandellini, P., De Donatis, A., Lanciotti, M., Serni, S., Cirri, P. and Chiarugi, P. (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72, 5130-5140.   DOI
89 Fruman, D. A., Chiu, H., Hopkins, B. D., Bagrodia, S., Cantley, L. C. and Abraham, R. T. (2017) The PI3K pathway in human disease. Cell 170, 605-635.   DOI
90 Gajewski, T. F., Schreiber, H. and Fu, Y.-X. (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014-1022.   DOI
91 Galmozzi, E., Casalini, P., Iorio, M. V., Casati, B., Olgiati, C. and Ménard, S. (2004) HER2 signaling enhances 5'UTR-mediated translation of c-Myc mRNA. J. Cell. Physiol. 200, 82-88.   DOI
92 Geiger, R., Rieckmann, J. C., Wolf, T., Basso, C., Feng, Y., Fuhrer, T., Kogadeeva, M., Picotti, P., Meissner, F., Mann, M., Zamboni, N., Sallusto, F. and Lanzavecchia, A. (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829-842.e13.   DOI
93 Semba, H., Takeda, N., Isagawa, T., Sugiura, Y., Honda, K., Wake, M., Miyazawa, H., Yamaguchi, Y., Miura, M., Jenkins, D. M. R., Choi, H., Kim, J. W., Asagiri, M., Cowburn, A. S., Abe, H., Soma, K., Koyama, K., Katoh, M., Sayama, K., Goda, N., Johnson, R. S., Manabe, I., Nagai, R. and Komuro, I. (2016) HIF-$1{\alpha}$-PDK1 axisinduced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun. 7, 11635.
94 Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197.   DOI
95 Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., Casimiro, M. C., Wang, C., Fortina, P., Addya, S., Pestell, R. G., Martinez-Outschoorn, U. E., Sotgia, F. and Lisanti, M. P. (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984-4001.   DOI
96 Rathmell, J. C., Fox, C. J., Plas, D. R., Hammerman, P. S., Cinalli, R. M. and Thompson, C. B. (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factorindependent survival. Mol. Cell. Biol. 23, 7315-7328.   DOI
97 Gentric, G., Mieulet, V. and Mechta-Grigoriou, F. (2017) Heterogeneity in cancer metabolism: new concepts in an old field. Antioxid. Redox Signal. 26, 462-485.   DOI
98 Rattigan, Y. I., Patel, B. B., Ackerstaff, E., Sukenick, G., Koutcher, J. A., Glod, J. W. and Banerjee, D. (2012) Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp. Cell Res. 318, 326-335.   DOI
99 Reitzer, L. J., Wice, B. M. and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669-2676.
100 Sears, R., Leone, G., DeGregori, J. and Nevins, J. R. (1999) Ras enhances Myc protein stability. Mol. Cell 3, 169-179.   DOI