• Title/Summary/Keyword: Glycolic Acid

Search Result 164, Processing Time 0.029 seconds

Metabolomics in Natural Products Research (천연물 연구에서의 메타볼로믹스)

  • Chan Seo;Tae-Su Kim;Bo-Ram Kim;Su Hui Seong;Jin-Ho Kim;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.16-16
    • /
    • 2023
  • Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under a given set of conditions. Metabolomics has its roots in early metabolite profiling studies but is now a rapidly expanding area of scientific research in its own right. In this study, the applications of metabolomics in natural product studies are explored. Ginseng is a well-known herbal medicine and has various pharmacological effects, which include antiaging, anticancer, antifatigue, memory enhancing, immunomodulatory, and stress reducing effects. Metabolomic analysis of organic acids has not been performed for evaluation whether ginseng has been cultivated using conventional or environmental-friendly farming methods. In this study, profiling analysis was conducted for organic acids (OAs) in ginseng roots produced using conventional or environmentfriendly farming methods at five locations in each of five regions. In OA profiles, lactic acid was the most abundant OA in all regions, with the exception for environmentally friendly farmed ginseng in two of the five regions, in which glycolic acid was most abundant OA. OA profiles in all regions showed isocitric acid levels were increased by environment-friendly cultivation, which suggests metabolic differences associated from farming method, and that isocitric acid might be a useful discriminatory biomarker of environmental-friendly and conventional cultivation. The results of the present study suggest metabolomic studies of OAs in ginseng roots might be useful for monitoring whether ginseng has been cultivated using conventional or environmentally friendly farming methods.

  • PDF

Effect of Paclitaxel-loaded Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells

  • Hou, Zhi-Hong;Zhao, Wen-Cui;Zhang, Qi;Zheng, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1725-1728
    • /
    • 2015
  • Objective: To explore effects of paclitaxel-loaded poly lactic-co-glycolic acid (PLGA) particles on the viability of human hepatocellular carcinoma (HCC) HepG2 cells. Materials and Methods: The viability of HepG2 cells was assessed using MTT under different concentrations of prepared paclitaxel-loaded particles and paclitaxel (6.25, 12.5, 25, 50, and 100 mg/L), and apoptosis was analyzed using Hochest33342/Annexin V-FITC/PI combined with an IN Cell Analyzer 2000. Results: Paxlitaxel-loaded nanoparticles were characterized by narrow particle size distribution (158.6 nm average particle size). The survival rate of HepG2 cells exposed to paclitaxel-loaded PLGA particles decreased with the increase of concentration and time period (P<0.01 or P<0.05), the dose- and time-dependence indicating sustained release (P<0.05). Moreover, apoptosis of HepG2 cells was induced, again with an obvious dose- and time-effect relationship (P<0.05). Conclusions: Paclitaxel-loaded PLGA particles can inhibit the proliferation and induce the apoptosis of HCC HepG2 cells. This new-type of paclitaxel carrier body is easily made and has low cost, good nanoparticle characterization and sustained release. Hence, paclitaxel-loaded PLGA particles deserve to be widely popularized in the clinic.

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Neuronal Differentiation of PC12 Cells Cultured on Growth Factor-Loaded Nanoparticles Coated on PLGA Microspheres

  • Park, Keun-Hong;Kim, Hye-Min;Na, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1490-1495
    • /
    • 2009
  • The development of nanotechnology has penetrated the fields of biology and medicine, resulting in remarkable applications for tissue regeneration. In order to apply this technology to tissue engineering, we have developed nano-scaled 3D scaffolds consisting of growth factor-loaded heparin/poly(l-lysine) nanoparticles (NPs) attached to the surface of polymeric micro spheres via polyionic complex methods. Growth factor-loaded NPs were simply produced as polyelectrolyte complexes with diameters of 100-200 nm. They were then coated onto positively charged poly(lactic-co-glycolic acid) (PLGA) pretreated with polyethyleneimine to enable cell adhesion, proliferation, and stimulation of neurite outgrowth. Propidium iodide staining and $\beta$-tubulin analysis revealed that neuronal PC12 cells proliferated extensively, expressed significant amounts of b-tubulin, and showed well-structured neurite outgrowth on polymeric microspheres by stimulation with growth factors. These results suggest that cellular adhesion and biological functionality on prepared PLGA microspheres enabled terminal differentiation of neuronal cells.

In vitro and in vivo Application of PLGA Nanofiber for Artificial Blood Vessel

  • Kim, Mi-Jin;Kim, Ji-Heung;Yi, Gi-Jong;Lim, Sang-Hyun;Hong, You-Sun;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the dual-layered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).

Tranilast-delivery surgical sutures to ameliorate wound healing by reducing scar formation through regulation of TGF-β expression and fibroblast recruitment

  • Choi, Sung Yoon;Kim, Byung Hwi;Huh, Beom Kang;Jeong, Woong;Park, Min;Park, Hyo Jin;Park, Ji-Ho;Heo, Chan Yeong;Choy, Young Bin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.469-477
    • /
    • 2018
  • We describe surgical sutures enabled with the local, sustained delivery of a TGF-${\beta}$ inhibitory drug, tranilast. To fabricate drug-delivery sutures, we separately prepared a tranilast-loaded strand using poly (lactic-co-glycolic acid), which was then physically braided with a surgical suture already in clinical use. By this method, the drug-delivery sutures maintained the mechanical strength and allowed the modulation of drug release profiles by simply altering the tranilast-loaded strand. The drug-delivery sutures herein released tranilast for up to 14 days. When applied to animal models, scarring was indeed reduced with diminished TGF-${\beta}$ expression and fibroblast numbers during the entire 21 day testing period.

Regeneration of Intervertebral Disc Using Gellan Sponge Loading PLGA Microspheres (PLGA 미립구가 함유된 젤란검 스폰지를 이용한 추간판 조직 재생)

  • Park, Hyunwoo;Kim, Hye Yun;Kwon, Soon Yong;Khang, Gilson;Kim, Yong-Sik
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.144-150
    • /
    • 2015
  • Gellan gum as a natural polysaccharide has good heat resistance, acid resistance and enzymes resistance. However, one of the drawbacks of gellan gum might be the lower mechanical strength. In this work, gellan gum scaffolds were mixed with poly(lactic-co-glycolic acid) (PLGA) microsphere in order to improve mechanical properties. The gellan gum scaffolds with various contents of PLGA microsphere were prepared for the regeneration of disc tissues. To evaluate the mechanical strength of hybrid structure of gellan gum and PLGA microsphere, compression strength of the fabricated scaffolds was measured. MTT analysis, SEM observation, histological evaluation and RT-PCR were performed to confirm the effect on the cell growth and extracellular matrix secretion. As a result, it showed the best cell proliferation and extracellular matrix secretion in gellan gum sponge containing 50% PLGA microspheres. In conclusion, this study confirmed that the hybrid structure of gellan gum and PLGA microspheres was found suitable in regeneration of the intervertebral disc.

Formulation and Characterization of Antigen-loaded PLGA Nanoparticles for Efficient Cross-priming of the Antigen

  • Lee, Young-Ran;Lee, Young-Hee;Im, Sun-A;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • Background: Nanoparticles (NPs) prepared from biodegradable polymers, such as poly (D,L-lactic acid-co-glycolic acid) (PLGA), have been studied as vehicles for the delivery of antigens to phagocytes. This paper describes the preparation of antigen-loaded PLGA-NPs for efficient cross-priming. Methods: NPs containing a similar amount of ovalbumin (OVA) but different sizes were produced using a micromixer-based W/O/W solvent evaporation procedure, and the efficiency of the NPs to induce the cross-presentation of OVA peptides were examined in dendritic cells (DCs). Cellular uptake and biodistribution studies were performed using fluorescein isothiocyanate (FITC)-loaded NPs in mice. Results: The NPs in the range of $1.1{\sim}1.4{\mu}m$ in size were the most and almost equally efficient in inducing the cross-presentation of OVA peptides via $H-2K^b$ molecules. Cellular uptake and biodistribution studies showed that opsonization of the NPs with mouse IgG greatly increased the percentage of FITC-positive cells in the spleen and lymph nodes. The major cell type of FITC-positive cells in the spleen was macrophages, whereas that of lymph nodes was DCs. Conclusion: These results show that IgG-opsonized PLGA-NPs with a mean size of $1.1{\mu}m$ would be the choice of biodegradable carriers for the targeted-delivery of protein antigens for cross-priming in vivo.

Development of SS-AG20-loaded Polymeric Microparticles by Oil-in-Water (o/w) Emulsion Solvent Evaporation and Spray Drying Methods for Sustained Drug Delivery

  • Choi, Eun-Jung;Bai, Cheng-Zhe;Hong, A-Reum;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3208-3212
    • /
    • 2012
  • Controlled drug delivery systems employing microparticles offer lots of advantages over conventional drug dosage formulations. Microencapsulation technique have been conducted with biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) for its adjustable biodegradability and biocompatibility. In this study, we evaluated two techniques, oil-in-water (o/w) emulsion solvent evaporation and spray drying, for preparation of polymeric microparticles encapsulating a newly synthesized drug, SS-AG20, for the long-term drug delivery of this low-molecular-weight drug with a very short half-life. Drug-loaded microparticles prepared by the solvent evaporation method showed a smoother morphology; however, relatively poor encapsulation efficiency and drastic initial burst were discovered as drawbacks. Spray-dried drug-loaded microparticles had an imperfect surface with pores and distorted portions so that its initial burst was critical (70.05-87.16%) when the preparation was carried out with a 5% polymeric solution. By increasing the concentration of the polymer, the morphology was refined and undesirable initial burst was circumvented (burst was reduced to 35.93-74.85%) while retaining high encapsulation efficiency. Moreover, by encapsulating the drug with various biodegradable polymers using the spray drying method, gradual and sustained drug release, for up to 2 weeks, was achieved.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF