In vitro and in vivo Application of PLGA Nanofiber for Artificial Blood Vessel

  • Kim, Mi-Jin (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Yi, Gi-Jong (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Yonsei University) ;
  • Lim, Sang-Hyun (Department of Thoracic and Cardiovascular Surgery, School of Medicine, Ajou University) ;
  • Hong, You-Sun (Division of Cardiovascular Surgery, Cardiovascular Center, College of Medicine, Yonsei University) ;
  • Chung, Dong-June (Department of Polymer Science & Engineering, Sungkyunkwan University, Intellectual Biointerface Engineering Center, Seoul National University)
  • Published : 2008.06.30

Abstract

Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the dual-layered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).

Keywords

References

  1. N. L'Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. F. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister, Nat. Med., 12, 361 (2006) https://doi.org/10.1038/nm1364
  2. E. R. Edelman, Circ. Res., 85, 111 (1999)
  3. P. I. Musey, S. M. Ibim, and N. K. Talukder, Ann. N.Y. Acad. Sci., 961, 279 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb03102.x
  4. G. W. Bos, A. A. Poot, T. Beugeling, W. G. van Aken, and J. Feijen, Arch. Physiol. Biochem., 106, 100 (1998) https://doi.org/10.1076/apab.106.2.100.4384
  5. D. J. Mooney, L. Cima, R. Langer, L. Johnson, L. K. Hansen, D. E. Ingber, and J. P. Vancanti, Mat. Res. Soc. Symp. Proc., 252, 345 (1992)
  6. B. C. Isengerg, C. Williams, and R. T. Tranquillo, Circ. Res., 98, 25 (2006)
  7. G. M. Riha, P. H. Lin, A. B. Lumsden, Q. Yao, and C. Chen, Tissue Eng., 11, 1535 (2005) https://doi.org/10.1089/ten.2005.11.1535
  8. P. Bianco and P. G. Robey, Nature, 414, 118 (2001) https://doi.org/10.1038/35102181
  9. K. M. Sales, H. J. Salacinski, N. Alobaid, M. Mikhail, V. Balakrishnan, and A. M. Seifalian, Trends Biotechnol., 23, 461 (2005) https://doi.org/10.1016/j.tibtech.2005.06.006
  10. M. Abedin, Y. Tintut, and L. L. Demer, Circ. Res., 95, 671 (2004) https://doi.org/10.1161/01.RES.0000143421.27684.12
  11. G. Matsumura, S. Miyagawa-Tomita, T. Shinoka, Y. Ikada, and H. Kurosawa, Circulation, 108, 1729 (2003) https://doi.org/10.1161/01.CIR.0000092165.32213.61
  12. N. L'Heureux, T. N. McAllister, and L. M. de la Fuente, N. Engl. J. Med., 357, 1451 (2007) https://doi.org/10.1056/NEJMc071536
  13. S. W. Cho, S. H. Lim, I. K. Kim, Y. S. Hong, S. S. Kim, K. J. Yoo, H. Y. Park, Y. S. Jang, B. C. Chang, C. Y. Choi, and B. S. Kim, Annals. Surgery, 241, 506 (2005) https://doi.org/10.1097/01.sla.0000154268.12239.ed
  14. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomaterials, 26, 2603 (2005) https://doi.org/10.1016/j.biomaterials.2004.06.051
  15. D. Li, Y. Wang, and Y. Xia, Nano Lett., 3, 1167 (2003) https://doi.org/10.1021/nl0344256
  16. H.-K. Bae, C.-P. Chung, and D. J. Chung, Key Eng. Mater., 342-343, 325 (2007) https://doi.org/10.4028/www.scientific.net/KEM.342-343.325
  17. K. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn, Macromol. Res., 13, 446 (2005) https://doi.org/10.1007/BF03218479
  18. I. S. Lee, O. H. Kwon, W. Meng, I. K. Kang, and Y. Ito, Macromol. Res., 12, 374 (2004) https://doi.org/10.1007/BF03218414
  19. R. L. Armentano, D. B. Santana, E. I. Cabrera Fischer, S. Graf, H. P. Campos, Y. Z. German, M. C. Saldias, and I. Alvarez, Cryobiology, 52, 17 (2006) https://doi.org/10.1016/j.cryobiol.2005.09.001
  20. T. Uchida, S. Ikeda, H. Oura, M. Tada, T. Nakano, T. Fukuda, T. Matsuda, M. Negoro, and F. Arai, J. Biotech., 133, 213 (2008) https://doi.org/10.1016/j.jbiotec.2007.08.017
  21. B. S. Kim and D. J. Mooney, J. Biomed. Mater. Res., 41, 322 (1998) https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<322::AID-JBM18>3.0.CO;2-M
  22. C. Willams and T. Wick, Tissue Eng., 10, 930 (2004) https://doi.org/10.1089/1076327041348536
  23. S. P. Higgins, A. K. Solan, and L. E. Niklason, J. Biomed. Mater. Res., 67A, 295 (2003) https://doi.org/10.1002/jbm.a.10599
  24. D. Shum-Tim, U. Stock, J. Hrkach, T. Shinoka, J. Lien, and M. A. Moses, Ann. Thorac. Surg., 68, 2298 (1999) https://doi.org/10.1016/S0003-4975(99)01055-3
  25. S. Bunda, N. Kaviani, and A. Hinek, J. Biol. Chem., 280, 2341 (2005) https://doi.org/10.1074/jbc.M409897200