DOI QR코드

DOI QR Code

Neuronal Differentiation of PC12 Cells Cultured on Growth Factor-Loaded Nanoparticles Coated on PLGA Microspheres

  • Park, Keun-Hong (College of Medicine, Pochon CHA University, CHA Stem Cell Institute) ;
  • Kim, Hye-Min (Department of Biotechnology, The Catholic University of Korea) ;
  • Na, Kun (Department of Biotechnology, The Catholic University of Korea)
  • Published : 2009.11.30

Abstract

The development of nanotechnology has penetrated the fields of biology and medicine, resulting in remarkable applications for tissue regeneration. In order to apply this technology to tissue engineering, we have developed nano-scaled 3D scaffolds consisting of growth factor-loaded heparin/poly(l-lysine) nanoparticles (NPs) attached to the surface of polymeric micro spheres via polyionic complex methods. Growth factor-loaded NPs were simply produced as polyelectrolyte complexes with diameters of 100-200 nm. They were then coated onto positively charged poly(lactic-co-glycolic acid) (PLGA) pretreated with polyethyleneimine to enable cell adhesion, proliferation, and stimulation of neurite outgrowth. Propidium iodide staining and $\beta$-tubulin analysis revealed that neuronal PC12 cells proliferated extensively, expressed significant amounts of b-tubulin, and showed well-structured neurite outgrowth on polymeric microspheres by stimulation with growth factors. These results suggest that cellular adhesion and biological functionality on prepared PLGA microspheres enabled terminal differentiation of neuronal cells.

Keywords

References

  1. Bozkurt, A., G. A. Brook, S. Moellers, F. Lassner, B. Sellhaus, J. Weis, et al. 2007. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 13: 2971-2979 https://doi.org/10.1089/ten.2007.0116
  2. Chapin, J. K. 2004. Using multi-neuron population recordings for neural prosthetics. Nat. Neurosci. 7: 452-455 https://doi.org/10.1038/nn1234
  3. Claude, P., I. M. Parada, K. A. Gordon, P. A. D'Amore, and J. A. Wagner. 1988. Basic FGF induces neuronal differentiation cell division, and NGF dependence in chromaffin cells: A sequence of events in sympathetic debelopment. Neuron 1: 783-790 https://doi.org/10.1016/0896-6273(88)90126-2
  4. Crompton, K. E., J. D. Gound, R. V. Bellamkonda, T. R. Gengenbach, D. I. Finkelstein, M., K,. Home, and J. S. Forsythe. 2007. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biometerials 28: 441-449 https://doi.org/10.1016/j.biomaterials.2006.08.044
  5. Dodla, M. C. and R. V. Bellakonda. 2008. Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29: 33-46 https://doi.org/10.1016/j.biomaterials.2007.08.045
  6. Goldner, J. S., J. M. Bruder, G. Li, D. Gazzola, and D. Hoffman-Kim. 2006. Neurite bridging across micropatterned grooves. Biomaterials 27: 460-472 https://doi.org/10.1016/j.biomaterials.2005.06.035
  7. Haile, Y., K. Haastert, K. Cesnulevicius, K. Sturnmeyer, M. Timmer, S. Berski, G. Drager, R. Gerardy-Schahn, and C. Grothe. 2007. Culturing of glial and neuronal cells on polysialic acid. Biomaterials 28: 1163-1173 https://doi.org/10.1016/j.biomaterials.2006.10.030
  8. Ishikawa, N., Y. Suzuki, M. Ohta, H. Cho, S. Suzuki, M. Dezawa, and C. Ide. 2007. Peripheral nerve regeneration through the space formed by a chitosan gell sponge. J. Biomed. Mater. Res. A 83: 33-40
  9. Jan, E. and N. A. Kotov. 2007. Successful differentiation of mouse neural stem cells on layer-by-layer assembled singlewalled carbon nanotube composite. Nano Lett. 7: 1123-1128 https://doi.org/10.1021/nl0620132
  10. Keilhoff, G., A. Goihl, F. Stang, G. Wolf, and H. Fansa. 2006. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 12: 1451-1465 https://doi.org/10.1089/ten.2006.12.1451
  11. Li, J. and R. Shi. 2007. Fabrication of patterned multi-walled poly-r.-lactic acid conduits for nerve regeneration. J. Neurosci. Methods 165: 257-264 https://doi.org/10.1016/j.jneumeth.2007.06.006
  12. Ma, W., T. Tavakoli, S. Chen, D. Marie, J. L. Liu, T. J. 2008. Reconstruction of functional cortical-like tissues from neural stem and progenitor cells. Tissue Eng Part A. 14: 1673-1686 https://doi.org/10.1089/ten.tea.2007.0357
  13. Na, K., S. Kim, K. Park, K. Kim, D. G. Woo, I. C. Kwon, H. M. Chung, and K. H. Park. 2007. Hepari/Poly(1-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. J. Am. Chem. Soc. 129: 5788-5789 https://doi.org/10.1021/ja067707r
  14. Ohuchi, T., S. Maruoka, A. Sakudo, and T. Arai. 2002. Assay-based quantitative analysis of PC12 cell differentiation. J. Neurosci. Methods 11: 1-8 https://doi.org/10.1016/0165-0270(84)90002-5
  15. Park, J. S., K. Park, D. G. Woo, H. N. Yang, H. M. Chung, and K. H. Park. 2008. PLGA microsphere construct coated with TGF-b 3 loaded nanoparticles for neocartilage formation. Biomacromolecules 9: 2162-2167 https://doi.org/10.1021/bm800251x
  16. Patolsky, F., B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. M. Lieber. 2006. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313: 1100-1104 https://doi.org/10.1126/science.1128640
  17. Presta, M., P. Oreste, G. Zoppetti, M. Belleri, E. Tanghetti, D. Leali, et al. 2005. Antiangiogenic activity of semisynthetic biotechnological heparins: low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists. Arterioscler Thromb Vase. Biol. 25: 71-76
  18. Sakiyama-Elberta, S. E. and J. A. Hubbell. 2000. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Controll. Release 65: 389-402 https://doi.org/10.1016/S0168-3659(99)00221-7
  19. Schmidt, C. E., V. R. Shastri, J. P. Vacanti, and R. Langer. 1997. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA. 94: 8948-8953 https://doi.org/10.1073/pnas.94.17.8948
  20. Sierpinski, P., J. Garrett, J. Ma, P. Apel, D. Klorig, T. Smith, L. A. Koman, A. Atala, and M. Van Dyke. 2008. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29: 118-128 https://doi.org/10.1016/j.biomaterials.2007.08.023
  21. Smith, R. M., C. Wiedl, P. Chubb, and C. H. Greene. 2007. Role of small intestine submcosa (SIS) as a nerve conduit: preliminary report. J. Invest. Surg. 17: 339-344
  22. Sun, T., D. Norton, N. L. Vickers, S. McArthur, S. M. Neil, A. J. Ryan, and J. W. Haycock. 2008. Development of a bioreactor for evaluating novel nerve conduits. Biotechnol. Bioeng. 99: 1250-1260 https://doi.org/10.1002/bit.21669
  23. Sykova, E., A. Homola, R. Mazanec, H. Lachmann, S. L. Konradova, P. Kobylka, et al. 2006. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 15: 675-687 https://doi.org/10.3727/000000006783464381

Cited by

  1. Electrically Conductive Gold-Coated Collagen Nanofibers for Placental-Derived Mesenchymal Stem Cells Enhanced Differentiation and Proliferation vol.5, pp.6, 2009, https://doi.org/10.1021/nn1035312
  2. Delivery of Growth Factors for Tissue Regeneration and Wound Healing : vol.26, pp.3, 2009, https://doi.org/10.2165/11631850-000000000-00000
  3. Tailoring of the dopamine coated surface with VEGF loaded heparin/poly‐l‐lysine particles for anticoagulation and accelerate in situ endothelialization vol.103, pp.6, 2009, https://doi.org/10.1002/jbm.a.35339
  4. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold vol.103, pp.8, 2009, https://doi.org/10.1002/jbm.a.35397
  5. Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles vol.4, pp.6, 2009, https://doi.org/10.1039/c5tb02130h
  6. In Vitro Differentiation of Human iPS Cells into Neural like Cells on a Biomimetic Polyurea vol.54, pp.1, 2017, https://doi.org/10.1007/s12035-015-9663-7