• Title/Summary/Keyword: Glycine max L. Merr.

Search Result 173, Processing Time 0.033 seconds

Effects of Planting Dates on Growth and Yield of Soybean Cultivated in Drained-Paddy Field

  • Cho Jin-Woong;Lee Jung-Joon;Kim Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • This study was carried out to determine adequate planting date, to compare the growth characteristics between early and late maturing cultivars, and to provide the data for the cultivation techniques of soybean [Glycine max (L.) Merr.] in double cropping system with winter crops on paddy field in Korea. Cultivars were planted on 26 May, 16 June, and 7 July with a planting density of $70cm(row\;widtb)\;{\times}\;10cm$ (planting spacing). Seed yield of soybean planted on June 16 and July 7 was approximately $37\%\;and\;53\%$, respectively, less than that of conventional planting date of May 26 in Pungsan-namulkong, and planted on June 16 and July 7 was about $30\%\;and\;37\%$, respectively, less then that of conventional planting date of May 26 in Hanamkong. The number of pods and seeds per plant decreased as planting date delayed. Seed weight increased in Pungsan-namulkong but decreased in Hannamkong as planting date delayed. The flowering date was late in delayed planting plots, but it was shorted for days from emergence to flowering and from emergence to maturity. The plant height of Hannamkong was greater than Pungsan-namulkong from the emergence to flowering stages, but in contrast, it was greater in Pungsan-namulkong than Hannamkong after flowering stage (50d after emergence) when it planted on May 26. There were no significant differences between two soybean cultivars at planting dates of June 16 and July 7. Leaf number, leaf area, and dry matter were also reduced by late planting, and Both of them were shown in high reduction at the later planting. There was a high significant difference at the flowering $(r\;=\;0.87^{**})$ and pod formation $(r\;=\;0.91^{**})$ stages between leaf dry matter and seed yield. Crop growth rate (CGR) was greater at $R2\~R3$ growth stages compared to $R3\~R4\;or\;R4\~R5$ growth stages in two soybean cultivars and the greatest CGR was obtained at planting date of May 26 in two soybean cultivars except for R4-R5 growth stage in Pungsan-namulkong. There was a highly significant positive difference between the seed yield and the leaf area index (LAI) across R3 to R4 and R2 to R3 stages. The photosynthetic rate $(P_N)$ of the uppermost leaf position had no significant difference among planting dates and between two soybean cultivars. However, $P_N$ of the $7^{th}$ leaf position increased as the planting date delayed.

Studies on Eeological characteristies of Some Soybean (Glycine max(L.) Merr) Cultivars 2. Effects of Day Length on Flowering and Other Agronomic Characteristics (주요 대두품종의 생태적 특성에 관한 연구 제2보 일장조건이 개화 및 제특성에 미치는 영향)

  • 최경구;김진기;이성춘;이왕휴;전병기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.59-65
    • /
    • 1980
  • An attempt was made to survey soybean cultivars that were nonsensitive to the photoperiod for selection as possible breeding materials for wide area adaptable varieties. Fifty-five cultivars were subjected to different day length conditions. The number of days from sowing until flowering was shortened under short day length conditions, and late varieties tended to be more sensitive to day length than early varieties. The response to day length of the tested cultivars might be divided into three groups; low, intermediate and high degree, by their accelerated rate of flowering. Especially four varieties in the low responding group, Gembokin, Wirth, Wayne and Pi.54613 were identified to be nonsensitive to day lengths, that is, neutral varieties. They also showed little variation in morphological characteristics under different day length conditions.

  • PDF

Study on the yield and delayed stem senescence of soybean varieties in late sowing cultivation

  • Suzuki, Daisuke;Gunji, Kento;Higo, Masao;Isobe, Katsunori
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.201-201
    • /
    • 2017
  • Delayed stem senescence of soybean is a phenomenon of retarded leaf and stem yellowing, where plants maintain a high stem water content and remain chlorophyll in leaf and stem at maturity stage. This phenomenon was one of the most important physiological disease in Japanese soybean cultivation. The occurrence of delayed stem senescence was affected by sowing time. And the most of Japanese field, soybean seeds were sowed in June. June is the rainy season in Japan, and the soil water content of field become higher in this season. In this study, the effects of late sowing (July sowing) on the yield and the occurrence of delayed stem senescence in soybean cultivars Enrei, Tachinagaha and Ayakogane were examined from 2013 to 2015, in the experimental farm at Nihon University (Fujisawa-city, Kanagawa, Japan). The seeds of all cultivars were sowed in June (June-normal density plot) or July (July-normal density plot, July-high density plot and July-super high density plot) in field experiment. The pot experiments were carried out in 2014. In all cultivars, the yield of July-high density plot and July-super high density were higher than that of June normal density plot. And the yield of June-normal density plot was the same as that of July-normal density plot. In all cultivars, the occurrence of delayed stem senescence was increased by seeding in June sowing. And in July sowing plots, no significance difference in the occurrence of delayed stem senescence was observed among density plots. One of reason about the increasing the occurrence of delayed stem senescence in June-normal plot was the increasing of the damaged seeds by bean bugs. Add one of reason about the decreasing of the occurrence of delayed stem senescence of July plots was the decreasing of the amount of cytokinin supplied from root to top and water stress after the flowering time was improved compared with the June plot. In conclusion, the yield of Enrei, Tachinagaha and Ayakogane were not changed by changing the sowing time from June to July. In all cultivars, the occurrence of delayed stem senescence were decreasing by seeding in July.

  • PDF

Increase of isoflavones in soybean callus by Agrobacterium-mediated transformation

  • Jiang, Nan;Jeon, Eun-Hee;Pak, Jung-Hun;Ha, Tae-Joung;Baek, In-Youl;Jung, Woo-Suk;Lee, Jai-Heon;Kim, Doh-Hoon;Choi, Hong-Kyu;Cui, Zheng;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.253-260
    • /
    • 2010
  • Plant secondary metabolites have always been a focus of study due to their important roles in human medicine and nutrition. We transferred the isoflavone synthase (IFS) gene into soybean [Glycine max (L.) Merr.] using the Agrobacterium-mediated transformation method in an attempt to produce transformed soybean plants which produced increased levels of the secondary metabolite, isoflavone. Although the trial to produce transgenic plant failed due to unestablished hygromycin selection, transformed callus cell lines were obtained. The induction rate and degree of callus were similar among the three cultivars tested, but light illumination positively influenced the frequency of callus formation, resulting in a callus induction rate of 74% for Kwangan, 67% for Sojin, and 73% for Duyou. Following seven to eight subcultures on selection media, the isoflavone content of the transformed callus lines were analyzed by high-performance liquid chromatography. The total amount of isoflavone in the transformed callus cell lines was three- to sixfold higher than that in control callus or seeds. Given the many positive effects of isoflavone on human health, it may be possible to adapt our transformed callus lines for industrialization through an alternative cell culture system to produce high concentrations of isoflavones.

Effects of Leaf and Pod Removal on Photosynthesis and Assimilate Partition in Soybean (적엽ㆍ제협처리가 콩의 광합성과 동화물질 배분에 미치는 영향)

  • Woong Tae, Kim;Rak Chun, Seong;Harry C, Minor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.2
    • /
    • pp.159-165
    • /
    • 1993
  • To clarify the effects of sink demand for assimilate on leaf photosynthetic rate, tissue composition, and leaf senescence of soybean [Glycine max (L.) Merr.] J plants, pod and leaf tissues were removed at growth stage $R^3$. Plant responses were measured every 10days from 2 through 42days following treatment. Leaves of depodded plants exhibited increased starch and chlorophyll contents and specific leaf weight. Stomatal resistance was also increased and leaf photosynthetic rate was reduced. Dry weight of vegetative tissues except leaves was increased by pod removal. Leaf removal resulted in a decreased starch content of leaves from 22 to 42days after treatment and that of roots at all sampling times. Specific leaf weight was decreased while leaf photosynthetic rate was increased. Stomatal resistance and chlorophyll content were little affected. Weight per seed was decreased 3.0% by leaf removal. Except for the seed, tissue protein contents were increased by pod removal but decreased by leaf removal, however, seed protein content was not affected by either. Apparent senescence was delayed by depodding. Both apparent and functional senescence were accelerated by leaf removal.

  • PDF

Selection of Lipoxygenase, Kunitz Trypsin inhibitor and 7Sα′-subunit Protein Free Soybean Strain (Lipoxygenase, Kunitz Trypsin inhibitor, 7Sα′-subunit 단백질이 결핍된 콩 계통의 선발)

  • Sung, Mi-Kyung;Kim, Kyung-Roc;Park, Jung-Soo;Han, Eun-Hui;Nam, Jin-Woo;Chung, Jong-Il
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.29-33
    • /
    • 2010
  • Soybean (Glycine max (L.) Merr.) seed is the main source of protein and oil for human and animal. The use of soybean protein has been expanded in the food industry due to their excellent nutritional benefits. But, antinutritional and allergenic factors are exist in the raw mature soybean. Lipoxygenase, Kunitz trypsin inhibitor (KTI) protein, and ${\alpha}^{\prime}-subunit$ of 7S globulin are main antinutritional factors in soybean seed. Breeding of a new soybean strain with lacking these components is needed. The objective of this research was to select new soybean line with lipoxygenase-free, KTI-free, and ${\alpha}^{\prime}-subunit$ free (lx1lx1lx2lx2lx3lx3titicgy1cgy1 genotype). Total 434 $F_2$seeds were obtained from the cross of cultivar, "Gaechuck#2" and PI506876. Presence and absence of lipoxygenase, KTI protein, and ${\alpha}^{\prime}-subunit$ of 7S globulin was tested by SDS electrophoresis using a partial seed of each $F_2$seed. Only one $F_2$seed with lacking these three components was selected and was planted to $F_2$plant. Absence of lipoxygenase, KTI, and ${\alpha}^{\prime}-subunit$ protein was confirmed on the $F_3$seeds harvested. Selected line with lx1lx1lx2lx2lx3lx3titicgy1cgy1 genotype might be useful for soybean breeding.

Responses of Growth Characteristics of Soybean [Glycine max (L.) Merr.] Cultivars to Riptortus clavatus Thunberg (Hemiptera: Alydidae) (콩 톱다리개미허리노린재 피해와 관련형질의 품종간 차이)

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Kyong-Ho;Paik, Chae-Hoon;Cho, Youngkoo;Kim, Hong-Sik;Kim, Tae-Soo
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.488-495
    • /
    • 2009
  • In recent years, an increasing amount of research has been conducted on the yield loss of soybean crop caused by Riptortus clavatus, a serious pest of legumes. The objective of this study were to examine crop damage caused by various population densities of R. clavatus and determine the association of unique growth and seed characteristics with crop damage rate in conventional soybean fields. Major growth responses to R. clavatus were examined. The cultivars that were not as seriously damaged by R. clavatus were Pungsannamulkong, Sobaegknamulkong, Duyoukong, and Sinpaldal 2, but Myeongjunamulkong, Mallikong, and Hwangkeumkong were significantly (P<0.05) damaged. The rate of seed damage caused by R. clavatus was 8.2% in a group of brown colored pubescence, while the rate was 13.0% in a group of the gray colored. Crop damage by R. clavatus clearly more reduced in cultivars with dark hilum colors including dark brown, brown, and grayish brown than those with yellow hilum colors. Concerning pod colors, crop damage was less significant in cultivars with dark brown pod color than with the light brown. Cultivars with short pod length (4.0-4.5 cm) at full seed (R6) stage showed lower seed damage rates by R. clavatus than those with long pod length (>5.6 cm). Therefore, characteristics of hilum, pod, pubescence colors, and pod length were significantly related and linked to the cultivar resistance to R. clavatus.

Quantitative Variation of Total Seed Isoflavone and its Compositions in Korean Soybean Cultivars (Glycine max (L.) Merr.)

  • Kim, Hong-Sik;Kang, Beom-Kyu;Seo, Jeong-Hyun;Ha, Tae-Joung;Kim, Hyun-Tae;Shin, Sang-Ouk;Park, Chang-Hwan;Kwak, Do-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.89-101
    • /
    • 2019
  • The variation of content of 12 soybean seed isoflavone components was determined in the aglycone, glucoside, malonylglucoside and acetylglucoside groups of 44 Korean soybean cultivars grown in 2016 as well as in 2017. The total isoflavone content of the 44 cultivars averaged at $2935.4{\mu}g/g$ and was in the range of 950.6 to $5226.3{\mu}g/g$ for two years. Malonylglucoside group averaged at $2437.2{\mu}g/g$ with the highest proportion of isoflavone composition (83.0%). Significant differences were observed between cultivars, years and their interactions for both the total isoflavone and each composition group contents (P < 0.0001); however, no year-wise differences were observed for daidzein and genistin. The broad-sense heritability ($h^2$) within the set of 44 Korean soybean cultivars was as high as 0.93 for the total isoflavone content and was in the range of 0.8-0.92 for each composition group of isoflavone except for acetylglucoside. The total isoflavone content in cultivar group for soy-sprout was higher ($3850.4{\mu}g/g$) than that for the other cultivar groups of soy-paste and tofu ($3082.8{\mu}g/g$), black or green soybean cooked with rice ($2345.8{\mu}g/g$), and early maturity group ($1298.6{\mu}g/g$). The total isoflavone content of 'Sowonkong', a soybean cultivar for soy-sprout, was the highest ($5226.3{\mu}g/g$). In the cultivar group for soy-paste and tofu, the average isoflavone contents of 'Daepung', 'Daepung2ho', 'Saegeum', 'Uram', and 'Jinpung' were higher than $4000{\mu}g/g$. With the exception of small seeded cultivars with low isoflavone contents such as 'Sohwang' and 'Socheongja', the seed size and total isoflavone content were significantly negatively correlated in 2016 and 2017, respectively ($r=-0.47^{**}$ and $-0.49^{**}$). The number of days of growth from flowering to maturity did not affect the variations observed in isoflavone content.

Comparative untargeted metabolomic analysis of Korean soybean four varieties (Glycine max (L.) Merr.) based on liquid chromatography mass spectrometry (국내콩 4품종의 LC-MS 기반 비표적대사체 비교평가)

  • Eun-Ha Kim;Soo-Yun Park;Sang-Gu Lee;Hyoun-Min Park;Oh Suk Yu;Yun-Young Kang;Myeong Ji Kim;Jung-Won Jung;Seon-Woo Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.439-446
    • /
    • 2022
  • Soybean is a crop with high-quality of protein and oil, and it is one of the most widely used genetically modified (GM) crops in the world today. In South Korea, Kwangan is the most utilized variety as a parental line for GM soybean development. In this study, untargeted LC-MS metabolomic approaches were used to compare metabolite profiles of Kwangan and three other commercial varieties cultivated in Gunwi and Jeonju in 2020 year. Metabolomic studies revealed that the 4 soybean varieties were distinct based on the partial least squares-discriminant analysis (PLS-DA) score plots; 18 metabolites contributed to variety distinction, including phenylalanine, isoflavones, and fatty acids. All varieties were clearly differentiated by location on the PLS-DA score plot, indicating that the growing environment is also attributable to metabolite variability. In particular, isoflavones and linolenic acid levels in Kwangan were significantly lower and higher, respectively compared to those of the three varieties. It was discussed that it might need to include more diverse conventional varieties as comparators in regard to metabolic characteristics of Kwangan for the assessment of substantial equivalence biogenetically engineered soybeans in a Kwangan-variety background.

Effect of Seed Coat Color and Seed Weight on Protein, Oil and Fatty Acid Contents in Seeds of Soybean (Glycine max (L.) Merr.) Germplasms

  • Yu-Mi Choi;Hyemyeong Yoon;Myoung-Jae Shin;Yoonjung Lee;On Sook Hur;XiaoHan Wang;Kebede Taye Desta
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.15-15
    • /
    • 2021
  • Seed coat color and seed weight are among the key agronomical traits that determine the nutritional quality of soybean seeds. This study aimed to evaluate the contents of total protein, total oil and five prominent fatty acids in seeds of 49 soybean varieties recently cultivated in Korea, and assess the influences of seed coat color and seed weight on each. Total protein and total oil contents were in the ranges of 36.28-44.19% and 13.45-19.20%, respectively. Likewise, individual fatty acid contents were in the ranges of 9.90-12.55, 2.45-4.00, 14.97-38.74, 43.22-60.26, and 5.37-12.33% for palmitic, stearic, oleic, linoleic, and linolenic acids, respectively. Our results found significant variations of protein, oil and fatty acid contents between the soybean varieties. Moreover, both seed coat color and seed weight significantly affected total oil and fatty acid contents. Total protein content, however, was not significantly affected by any factor. Among colored soybeans, pale-yellow soybeans were characterized by a high level of oleic acid (30.70%) and low levels of stearic (2.72%), linoleic (49.30%) and linolenic (6.44%) acids, each being significantly different from the rest of colored soybeans (p < 0.05). On the other hand, small soybeans were characterized by high levels of all individual fatty acids except oleic acid. The level of oleic acid was significantly high in large seeds. Cluster analysis grouped the soybeans into two classes with notable content differences. Principal component analysis also revealed fatty acids as the prime factors for the variability observed among the soybean varieties. As expected, total oil and total protein contents showed a negative association with each other (r = -0.714, p < 0.0001). Besides, oleic acid and linoleic acid showed a tradeoff relationship (r = -0.936, p < 0.0001) which was reflected with respect to both seed coat color and seed weight. In general, the results of this study shade light on the significance of seed coat color and seed weight to distinguish soybeans in terms of protein, oil and fatty acid contents. Moreover, the soybean varieties with distinct characteristics and nutritional contents identified in this study could be important genetic resources for consumption and cultivar development.

  • PDF