Browse > Article
http://dx.doi.org/10.7740/kjcs.2019.64.2.089

Quantitative Variation of Total Seed Isoflavone and its Compositions in Korean Soybean Cultivars (Glycine max (L.) Merr.)  

Kim, Hong-Sik (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Kang, Beom-Kyu (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Seo, Jeong-Hyun (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Ha, Tae-Joung (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Kim, Hyun-Tae (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Shin, Sang-Ouk (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Park, Chang-Hwan (Crop Post-harvest Technology Division, Department of Central Area Crop Science, National Institute of Crop Science, RDA)
Kwak, Do-Yeon (Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.64, no.2, 2019 , pp. 89-101 More about this Journal
Abstract
The variation of content of 12 soybean seed isoflavone components was determined in the aglycone, glucoside, malonylglucoside and acetylglucoside groups of 44 Korean soybean cultivars grown in 2016 as well as in 2017. The total isoflavone content of the 44 cultivars averaged at $2935.4{\mu}g/g$ and was in the range of 950.6 to $5226.3{\mu}g/g$ for two years. Malonylglucoside group averaged at $2437.2{\mu}g/g$ with the highest proportion of isoflavone composition (83.0%). Significant differences were observed between cultivars, years and their interactions for both the total isoflavone and each composition group contents (P < 0.0001); however, no year-wise differences were observed for daidzein and genistin. The broad-sense heritability ($h^2$) within the set of 44 Korean soybean cultivars was as high as 0.93 for the total isoflavone content and was in the range of 0.8-0.92 for each composition group of isoflavone except for acetylglucoside. The total isoflavone content in cultivar group for soy-sprout was higher ($3850.4{\mu}g/g$) than that for the other cultivar groups of soy-paste and tofu ($3082.8{\mu}g/g$), black or green soybean cooked with rice ($2345.8{\mu}g/g$), and early maturity group ($1298.6{\mu}g/g$). The total isoflavone content of 'Sowonkong', a soybean cultivar for soy-sprout, was the highest ($5226.3{\mu}g/g$). In the cultivar group for soy-paste and tofu, the average isoflavone contents of 'Daepung', 'Daepung2ho', 'Saegeum', 'Uram', and 'Jinpung' were higher than $4000{\mu}g/g$. With the exception of small seeded cultivars with low isoflavone contents such as 'Sohwang' and 'Socheongja', the seed size and total isoflavone content were significantly negatively correlated in 2016 and 2017, respectively ($r=-0.47^{**}$ and $-0.49^{**}$). The number of days of growth from flowering to maturity did not affect the variations observed in isoflavone content.
Keywords
acetylglucoside; aglycone; glucoside; heritability; isoflavone; malonylglucoside; soybean; variation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone malonyltransferases Gm1MaT1 and Gm1-MaT3 differently modify isoflavone glucosides in soybean under various stresses. Front. Plant Sci. 8 : 735. doi : 10.3389/fpls. 2017.00735.   DOI
2 Chiari, L., N. D. Piovesan, L. K. Naoe, I. C. Jose, J. M. S. Viana, M. A. Moreira, and E. G. de Barros. 2004. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica 138 : 55-60.   DOI
3 Choung, M. G., S. T. Kang, W. Y. Han, I. Y. Baek, H. K. Kim, D. C. Shin, N. S. Kang, Y. S. Hwang, Y. N. An, J. D. Lim, K. S. Kim, S. H. Park, and S. L. Kim. 2006. Variation of isoflavone contents in Korean soybean germplasms. Korean. J. Crop Sci. 51 : 146-151.
4 Chung, H, S. Hogan, L. Zhang, K. Rainey, and K. Zhou. 2008. Characterization and comparison of antioxidant properties and bioactive components of Virginia soybeans. J. Agric. Food Chem. 56 : 11515-11519.   DOI
5 Genovese, M. I., J. Davila, and F. M. Lajolo. 2006. Isoflavones in processed soybean products from Ecuador. Braz. arch. biol. technol. 49 : 853-859.   DOI
6 Gutierrez-Gonzalez, J. J., X. Wu, J. Zhang, J. D. Lee, M. Ellersieck, J. G. Shannon, O. Yu, H. T. Nguyen, and D. A. Sleper. 2009. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor. Appl. Genet. 119 : 1069-1083.   DOI
7 Han, Y., D. Li, G. Zhao, X. Zhao, Z. Jiang, H. Hu, L. Wu, Y. Wang, Y. Gao, Y. Li, G. Zeng, F. Meng, W. Teng, and W. Li. 2016. Dynamic quantitative trait loci underlies isoflavone accumulation in soybean seed. Plant Breed. 135 : 335-341.   DOI
8 Hoeck, J. A., W. R. Fehr, P. A. Murphy, and G. A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40 : 48-51.   DOI
9 Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobek, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130 : 1695-1699.   DOI
10 Kim, H. M., E. K. Jang, B. S. Gwak, T. Y. Hwang, G. S. Yun, S. G. Hwang, H. S. Jeong, and H. S. Kim. 2018. Variation of isoflavone contents and classification using multivariate analysis in Korean soybean varieties released from 1913 to 2013. Kor. J. Breed. Sci. 50 : 50-60.   DOI
11 Kim, J. S., S. A. Kang, and K. H. Jang. 2014. Production of aglycone isoflavones by Bifidobacterium longum KCTC 5734. J. East Asian Soc. Dietary Life 24 : 641-645.
12 Kim, I. B., S. Shin, B. L. Lim, G. S. Seong, and Y. E. Lee. 2010. Bioconversion of soybean isoflavone by Lactobacillus plantarum and Bifidobacterium longum. Korean J. Food Cookery Sci. 26 : 214-219.
13 Lee, J. W., Y. J. Yi, J. H. Lee, M. S. Jo, D. J. Choi, M. H. Ma, H. S. Kim, D. O. Kim, H. T. Yun, and Y. H. Kim. 2018. Quantification of isoflavone malonylglucosides in soybean seed during germination. Korean J. Crop Sci. 63 : 239-247.   DOI
14 Lee, K. J., J. R. Lee, K. H. Ma, Y. H. Cho, G. A. Lee, and J. W. Chung. 2016. Anthocyanin and isoflavone contents in Korean black soybean landraces and their antioxidant activities. Plant Breed. Biotech. : 441-452.   DOI
15 Meng, S., J. He, T. Zhao, G. Xing, Y. Li, S. Yang, J. Lu, Y. Wang, and J. Gai. 2016. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theor. Appl. Genet. 129 : 1557-1576.   DOI
16 Messina, M. 2014. Soyfoods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 100 : 423S-430S.   DOI
17 Omoni A. O. and R. E. Aluko. 2005. Soybean foods and their benefits: potential mechanisms of action. Nutr. Rev. 63 : 272-283.   DOI
18 Park, K. H., X. M. Piao, E. K. Jang, Y. E. Yoo, T. Y. Hwang, S. L. Kim, J. H. Jong, H. M. Shin, and H. S. Kim. 2012. Variation of isoflavone contents in Korean soybean cultivars released from 1913 to 2006. Kor. J. Breed. Sci. 44 : 149-159.
19 Peterson, G. 1995. Evaluation of the biochemical targets of genistein in tumor cells. J. Nutr. 125(3 Suppl.) : 784-789.
20 Seker, H., A. Yazici, and P. Uysal. 2014. Analysis of variability, heritability, and genetic advance in seed yield and related traits of orchardgrass (Dactylis glomerata L.) populations. Turk. J. Agric. For. 38 : 633-643.   DOI
21 Shin, J. H., K. S. Kang, J. O. Kim, G. S. Yoon, T. G. Kwon, J. W. Kim, and Y. K. Sohn. 2006. Effects of genistein and daidzein on the growth of human colon cancer HCT-116 cells. Korean J. Pathol. 40 : 46-51.
22 Smallwood, C. J., C. N. Nyinyi, D. A. Kopsell, C. E. Sams, D. R. West, P. Chen, S. K. Kantartzi, P. B. Cregan, D. L. Hyten, and V. R. Pantalone. 2014. Detection and confirmation of quantitative trait loci for soybean seed isoflavones. Crop Sci. 54 : 595-606.   DOI
23 Toker, C. 2004. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.). Hereditas 140 : 222-225.   DOI
24 Tsukamoto, C., S. Shimada, K. Ijta, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seed: Changes in isoflavons, saponins and composition of fatty acids at different temperatures during seed development. J. Agri. Food Chem. 43 : 1184-1192.   DOI
25 Uesugi, T., Y. Fukui, and Y. Yamori. 2002 Beneficial effects of soybean isoflavone supplementation on bone metabolism and serum lipids in postmenopausal Japanese women: A four-week study. J. Amer. College. Nutr. 21 : 97-102.   DOI
26 Xu, B. and S. K. Chang. 2008. Characterization of phenolic substances and antioxidant properties of food soybeans grown in the North Dakota-Minnesota region. J. Agric. Food Chem. 56 : 9102-9113.   DOI
27 Yu, O. and B. McGonigle. 2005. Metabolic engineering of isoflavone biosynthesis. Advances in Agronomy 86 : 147-190.   DOI
28 Yun, H. T., W. H. Kim, Y. H. Lee, S. J. Suh, and S. J. Kim. 2006. Isoflavone contents of soybean according to different planting dates. Korean J. Crop. Sci. 51 : 174-178.
29 Zeng, G, D. Li, Y. Han, W. Teng, J. Wang, L. Qiu, and W. Li. 2009. Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theor. Appl. Genet. 118 : 1455-1463.   DOI