• Title/Summary/Keyword: Glutathione peroxidase(GPx)

Search Result 311, Processing Time 0.027 seconds

The Preventive Effects of Paeoniae Radix Extract against LPS-induced Acute Hepatotoxicity (LPS로 유도된 급성 간독성에 대한 백작약 추출물의 보호 효과)

  • Kim, In-Deok;Kwon, Ryun-Hee;Heo, Ye-Young;Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Jong-Myung;Ha, Bae-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.222-226
    • /
    • 2008
  • The purpose of this study was to investigate the preventive effects of Paeoniae Radix Extract(PRE) against the acute hepatotoxicity-inducing lipopolysaccharide(LPS) in the liver. PRE of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1.5 ml/kg for 20 days. On day 21, 5 mg/kg of LPS dissolved in saline was injected 4 hours before anesthetization. We examined the levels of glutamate oxaloacetate transaminase(GOT), glutamate pyruvate transaminase(GPT), lactate dehydrogenase(LDH) in serum of rats, superoxide dismutase(SOD) in mitochondrial fractions, and malondialdehyde(MDA), catalase(CAT), glutathione peroxidase(GPx) in liver homogenates. LPS-treatment markedly increased the levels of GOT, GPT, LDH and MDA, and significantly decreased those of SOD, CAT and GPx. But PRE-pretreatment decreased the levels of GOT, GPT, LDH and MDA, by 59.7%, 43.6%, 59.6% and 63.5%, respectively and increased those of SOD, CAT and GPx, by 85.5%, 57.8% and 62.9%, respectively. These results showed that the PRE had the preventive effects against the acute hepatotoxicity-inducing LPS in the liver.

Protective Effect of White-Skinned Sweet Potato (Ipomoea batatas L.) against Renal Damage in Streptozotocin-Induced Diabetic Rats (Streptozotocin으로 유발된 당뇨쥐의 신장 손상에 대한 white-skinned sweet potato (Ipomoea batatas L.) 추출물의 보호효과)

  • Jang, Hye-Won;Bachri, Moch. Saiful;Moon, Kyung-Ok;Park, Jong-Ok
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.161-168
    • /
    • 2010
  • White-skinned sweet potato (Ipomoea batatas L.) has been traditionally used for diabetes treatment and management in many countries. In this experiment, methanol extract of white-skinned sweet potato (WSPMe) at a dose of 100 or 200 mg/kg body weight was tested to evaluate its effect on renal damage in streptozotocin (STZ)-induced diabetic rats. Its efficacy was compared with that of insulin secretogogue, glimepiride ($50\;{\mu}g/kg$ body weight). Experimental diabetes was induced by a single dose of STZ (45 mg/kg, i.p.) injection. The WSPMe and glimepiride were administered orally for 14 days and the effects on glucose, renal markers including blood urea nitrogen (BUN), creatinine and lactate dehydrogenase (LDH), lipid peroxide (LPO) level, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathion-S-transferase (GST) activities in kidney were studied. An increase in BUN, creatinine, LDH, glucose, LPO levels and decrease in SOD, CAT, GPx and GST features were observed in diabetic control rats. Administration of WSPMe at a dose of 200 mg/kg body weight caused a significant improvement in blood glucose, LPO level, renal markers, lipid peroxidation markers and increased antioxidant levels in diabetic kidney. In conclusion, the WSPMe was found to be effective in reducing oxidative stress, thus confirming the ethnopharmacological use of I. batatas L. in protecting diabetes and its complications.

Ulva lactuca Fucoidan Extract and its Protective Effects on $CCI_4$-induced Liver Dysfunction ($CCI_4$로 유도된 간 기능장애에 대한 갈파래 푸코이단 추출물의 보호효과)

  • Nam, Chun-Suk;Kang, Kum-Suk;Ha, Bae-Jin
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.73-77
    • /
    • 2007
  • The effects of Fucoidan extracted from Ulva lactuca on carbon tetrachloride ($CCI_4$)-induced dysfunction in $CCI_4$-posttreated rats were investigated. Ulva lactuca fucoidan (ULF) of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1 ml/kg for 14 days. On the day 15, 3.3 ml/kg of $CCI_4$ dissolved in olive oil (1 : 1) was injected 12 hours before anesthetization. We examined the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) in serum of rats, superoxide dismutase (SOD) in mitochondrial fraction and catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA) in liver of rats. SOD, CAT, GPx decreased, and GOT, GPT, MDA increased in the $CCI_4$-treated group. But SOD, CAT, GPx increased, and GOP, GPT, MDA decreased in the ULF and $CCI_4$-treated group. These results showed that ULF had the protective effects on the liver dysfunction of $CCI_4$-treated rats.

Hypolipidemic Effects of Glycoprotein Isolated from Ficus Carica Linnoeus in Mice (무화과 당단백질의 혈중지질 저하 효과)

  • Lim, Kye-Taek;Lee, Sei-Jung;Ko, Jeong-Hyeon;Oh, Phil-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.624-630
    • /
    • 2005
  • Glycoprotein (60 kDa) isolated from Ficus Carica Linnoeus (FCL glycoprotein) was examined by evaluating its hypolipidemic effects on plasma cholesterol levels and hepatic detoxicant enzyme activities in ICR mice. FCL glycoprotein $(100{\mu}g/mL)$ had strong scavenging activities (38%) against lipid peroxyl radicals. When mice were treated with Triton WR-1339 (400 mg/kg), levels of total cholesterol (TC) and low-density lipoprotein (LDL)-cholesterol in plasma significantly increased by 53.9 and 47.5 mg/dL, respectively, compared to the control, whereas, when pretreated with FCL glycoprotein $(100{\mu}g/mL)$, decreased remarkably by 55.4, and 47,0 mg/dL, compared to Triton WR-1339 treatment alone. Interestingly, high-density lipoprotein (HDL)-cholesterol level did not change. Body and liver weights did not change significantly after Triton WR-1339 treatment in presence of FCL glycoprotein. FCL glycoprotein $(100{\mu}g/mL)$ stimulated activities of antioxidative detoxicant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), whereas GPx activity significantly increased compared to the control. These results suggest FCL glycoprotein has abilities to scavenge lipid peroxyl radicals, lower plasma lipid levels, and stimulate detoxicant enzyme activity in mouse liver.

Physiological Responses of Cultured Red Seabream Pagrus major and Olive Flounder Paralichthys olivaceus During Exposure to the Red Tide Dinoflagellate Cochlodinium polykrikoides (적조 Cochlodinium polykrikoides 노출에 따른 양식산 참돔과 넙치의 생리학적 반응 )

  • Hyo-Won, Kim;Hyun Woo, Gil;Young Jae, Choi;Yun Kyung, Shin
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • The present study investigated the survival rate, respiration rate, plasma stress index, and histological changes according to exposure time of cultured red seabream (Pagrus major) and olive flounder (Paralichthys olivaceus) exposed to Cochlodinium polykrikoides red tide. Fish cultured in natural seawater were used as the control group. Cochlodinium polykrikoides density was set to 5,500±200 cells·ml-1 in the experimental groups. All red seabreams died within 1 hour of exposure to red tide, whereas all olive flounders died within 5 hours of exposure. Analysis of physiological response revealed that in red seabream, plasma glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), catalase (CAT), and glutathione peroxidase (GPx) concentrations were increased; plasma glucose and superoxide dismutase (SOD) concentration were decreased. Meanwhile, in olive flounders, plasma cortisol, GOT, and GPT concentrations were increased; plasma glucose concentrations were increased during the first hour of exposure, followed by decrease after 5 hours; and plasma SOD, CAT, and GPx concentrations decreased during the first hour of exposure. Histological analysis revealed structural damage to the gills of both red seabream and olive flounder. In conclusion, the exposure of red seabream and olive flounder to Cochlodinium polykrikoides red tide at the density of 5,500 cells·ml-1 induces oxidative stress, which activates antioxidant defense mechanisms, ultimately leading to liver and gill damage.

Effect of Iron Supplementation on Iron-Deficiency-Related Indices, Oxidative Stress and Antioxidative Enzyme Activity in Female Marathoners

  • Kim, Hye Young P.;Park, Jee-Young;Kang, Hyung-Sook
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • This study was performed to evaluate the effect of iron supplementation on iron-deficiency-related indices, oxidative stress and antioxidative enzyme activity in female marathoners. Fourteen teenage female marathoners participated in the study. Subjects were divided into two groups: mild anemic and control, depending on their hemoglobin (Hb) level. The mild anemic group had significantly lower RBC count and hematocrit (Hct) and Hb levels compared to the control group. The mild anemic group (〈12.5g Hb/dI, n=7) was given iron supplements (60mg Fe/day) for four weeks during the summer training period. RBC count, Hct and Hb levels showed an increasing tendency through iron supplementation, and significant differences in these variables between the anemic and control groups disappeared in the post-period. There was no difference in plasma malondialdehyde (MDA) between the anemic and control groups. However, catalase (CAT) and glutathione peroxidase (GPx) activity were significantly higher in the anemic group. The significant difference in enzyme activity between the groups disappeared in the post-period. In addition, superoxide dismutase activity significantly decreased after iron supplementation. In conclusion, antioxidative enzyme activity was up-regulated in an anemic condition and mild iron supplementation decreased the antioxidant enzyme activity of female marathoners while improving their anemic condition.

Anticancer Activity of Monoterpenes and the Changes of Enzymes Activities Responsible for the Conversion of Reactive Oxygen Species (Monoterpenes의 항암작용과 활성산소 전환 효소의 활성 변화)

  • 조용선;김수진;박시원
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.37-45
    • /
    • 2003
  • The present study was undertaken to investigate the anticancer activity of monoterepenes in the animal and the cancer cell line tests. Both of the noncyclic and cyclic monoterpenes showed significant life prolonging effects on ICR mouse with abdominal cancer induced by Sarcoma 180 cells up to 67.4% and 63.5% in case of linalool and geraniol, respectively. Linalool and geraniol also exhibited very excellent cytotoxicity against L1210 leukemic cells with $IC_{50}$/ value of 0.32 $\mu\textrm{g}$/mι in 5 days culture condition. In the presence of linalool and geraniol, the generation of $O_2$$^{[-10]}$ ion were found to be increased proportionally to the cytotoxicity arisen from these monoterpenes. Furthermore, the antioxidant enzymes activities such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) responsible for the conversion of $O_2$$^{[-10]}$ ion to $H_2O$$_2$ and then to $H_2O$ augmented remarkably by linalool and geraniol. All data put together it can be postulated that monoterpenes may kill abdominal cancer cells of ICR mouse probably by activating anticancer system of the body, whereas the death of L1210 cells may be due to the detrimental attacks of reactive oxygen species (ROS) including $O_2$$^{[-10]}$ in spite of antioxidant enzymes activities to overcome the ROS attacks.

Cremastranone-Derived Homoisoflavanes Suppress the Growth of Breast Cancer Cells via Cell Cycle Arrest and Caspase-Independent Cell Death

  • Yeram Choi;Sangkyu Park;Seul Lee;Ha-Eun Shin;Sangil Kwon;Jun-Kyu Choi;Myeong-Heon Lee;Seung-Yong Seo;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.526-535
    • /
    • 2023
  • Breast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells. Homoisoflavane derivatives, SH-17059 and SH-19021, reduced cell proliferation through G2/M cell cycle arrest and induced caspase-independent cell death. These compounds increased heme oxygenase-1 (HO-1) and 5-aminolevulinic acid synthase 1 (ALAS1), suggesting downregulation of heme. They also induced reactive oxygen species (ROS) generation and lipid peroxidation. Furthermore, they reduced expression of glutathione peroxidase 4 (GPX4). Therefore, we suggest that the SH-17059 and SH-19021 induced the caspase-independent cell death through the accumulation of iron from heme degradation, and the ferroptosis might be one of the potential candidates for caspase-independent cell death.

Protective Effects of the Postbiotic Levilactobacillus brevis BK3 against H2O2-Induced Oxidative Damage in Skin Cells

  • Young-Sun Lee;Su-Jeong Lee;Won Je Jang;Eun-Woo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1401-1409
    • /
    • 2024
  • Postbiotics have various functional effects, such as antioxidant, anti-inflammatory, and anti-obesity. Levilactobacillus brevis BK3, the subject of this study, was derived from lactic acid bacteria isolated from Kimchi, a traditional Korean fermented food. The antioxidant activity of BK3 was confirmed through the measurements of 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total antioxidant capacity (TAC). The wrinkle improvement effect was validated by assessing elastase inhibitory activity and collagenase inhibitory activity. The intracellular activity was confirmed using human keratinocytes (HaCaT) and human fibroblasts (HFF-1). BK3 protects skin cells from oxidative stress induced by H2O2 and reduces intracellular reactive oxygen species (ROS) production. In addition, the expressions of the antioxidant genes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were upregulated. Meanwhile, matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COL1A1), involved in collagen degradation and synthesis, were significantly regulated. These results suggest the possibility of utilizing BK3 as a functional ingredient with antioxidant and wrinkle-improving effects.

Screening Differential Expressions of Defense-related Responses in Cold-treated 'Kyoho' and 'Campbell Early' Grapevines

  • Ahn, Soon Young;Kim, Seon Ae;Han, Jae Hyun;Kim, Seung Heui;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Low temperature is one of the major environmental factors that affect productivity including reduced growth and budding of vines, and changes of metabolic processes in grape (Vitis spp.). To screen the specific expression of abiotic stress-related genes against cold treatment in 'Kyoho' and 'Campbell Early' grapevines, expression of various defense-related genes was investigated by RT-PCR and real-time PCR. Among the 67 genes analyzed by RT-PCR and real-time PCR, 17 and 16 types of cDNA were up-regulated, while 5 and 6 types were down-regulated in cold-treated 'Kyoho' and 'Campbell Early' grapevines, respectively. Genes encoding carotene (Cart3564 and Cart4472), chalcone isomerase (CHI), cytochrome P450 (CYP), flavonol synthase (FLS), endo-${\beta}$-glucanase precursor (Glu), glutathione peroxidase (GPX), glutathione-S-transferase (GST), leucine-rich repeats (LRR), manganese superoxide dismutase (Mn-SOD), phenylalanine ammonia lyase (PAL), polygalacturonase-inhibiting protein (PGIP), proline rich protein 2 (PRP2), small heat shock protein (sHSP), temperature induced lipocalin (TIL), and thaumatin-like protein (TLP) were up-regulated, while those encoding CBF like transcription factor (CBF1), chitinase-like protein (CLP), cold induced protein (CIP), glycerol-3-phosphate acyltransferase (GPAT), and mitogen-activated protein kinase (MAPK) were down-regulated by low temperature treatment in both in 'Kyoho' and 'Campbell Early'.